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Abstract

Litter is a known cause of degradation in marine environments and most of it travels in
rivers before reaching the oceans. In this paper, we present a novel algorithm to assist waste
monitoring along watercourses. While several attempts have been made to quantify litter using
neural object detection in photographs of floating items, we tackle the more challenging task
of counting directly in videos using boat-embedded cameras. We rely on multi-object tracking
(MOT) but focus on the key pitfalls of false and redundant counts which arise in typical scenarios
of poor detection performance. Our system only requires supervision at the image level and
performs Bayesian filtering via a state space model based on optical flow. We present a new
open image dataset gathered through a crowdsourced campaign and used to train a center-based
anchor-free object detector. Realistic video footage assembled by water monitoring experts is
annotated and provided for evaluation. Improvements in count quality are demonstrated against
systems built from state-of-the-art multi-object trackers sharing the same detection capabilities.
A precise error decomposition allows clear analysis and highlights the remaining challenges.
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1 Introduction

Litter pollution concerns every part of the globe. Each year, almost ten thousand million tons of
plastic waste is generated, among which 80% ends up in landfills or in nature (Geyer, Jambeck, and
Law (2017)), notably threatening all of the world’s oceans, seas and aquatic environments (Welden
(2020), Gamage and Senevirathna (2020)). Plastic pollution is known to already impact more than
3763 marine species worldwide (see this detailed analysis) with risk of proliferation through the
whole food chain. This accumulation of waste is the endpoint of the largely misunderstood path of
trash, mainly coming from land-based sources (Rochman et al. (2016)), yet rivers have been identified
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as a major pathway for the introduction of waste into marine environments (Jambeck et al. (2015)).
Therefore, field data on rivers and monitoring are strongly needed to assess the impact of measures
that can be taken. The analysis of such field data over time is pivotal to understand the efficiency of
the actions implemented such as choosing zero-waste alternatives to plastic, designing new products
to be long-lasting or reusable, introducing policies to reduce over-packing.

Different methods have already been tested to monitor waste in rivers: litter collection and sorting on
riverbanks (Bruge et al. (2018)), visual counting of drifting litter from bridges (González-Fernández
et al. (2021)), floating booms (Gasperi et al. (2014)), and nets (Morritt et al. (2014)). All are helpful
to understand the origin and typology of litter pollution yet hardly compatible with long term
monitoring at country scales. Monitoring tools need to be reliable, easy to set up on various types of
rivers, and should give an overview of plastic pollution during peak discharge to help locate hotspots
and provide trends. Newer studies suggest that plastic debris transport could be better understood by
counting litter trapped on river banks, providing a good indication of the local macrolitter pollution
especially after increased river discharge (Emmerik et al. (2019), Emmerik and Schwarz (2020)). Based
on these findings, we propose a new method for litter monitoring which relies on videos of river
banks directly captured from moving boats.

In this case, object detection with deep neural networks (DNNs) may be used, but new challenges
arise. First, available data is still scarce. When considering entire portions of river banks from many
different locations, the variety of scenes, viewing angles and/or light conditions is not well covered by
existing plastic litter datasets like (Proença and Simões (2020)), where litter is usually captured from
relatively close distances and many times in urban or domestic backgrounds. Therefore, achieving
robust object detection across multiple conditions is still delicate.

Second, counting from videos is a different task than counting from independent images, because
individual objects will typically appear in several consecutive frames, yet they must only be counted
once. This last problem of association has been extensively studied for the multi-object tracking
(MOT) task, which aims at recovering individual trajectories for objects in videos. When successful
MOT is achieved, counting objects in videos is equivalent to counting the number of estimated
trajectories. Deep learning has been increasingly used to improve MOT solutions (Ciaparrone
et al. (2020)). However, newer state-of-the-art techniques require increasingly heavy and costly
supervision, typically all object positions provided at every frame. In addition, many successful
techniques (Bergmann, Meinhardt, and Leal-Taixe (2019)) can hardly be used in scenarios with
abrupt and nonlinear camera motion. Finally, while research is still active to rigorously evaluate
performance at multi-object tracking (Luiten et al. (2021)), most but not all aspects of the latter may
affect global video counts, which calls for a separate evaluation protocol dedicated to multi-object
counting.

Our contribution can be summarized as follows.

1. We provide a novel open-source image dataset of macro litter, which includes various objects
seen from different rivers and different contexts. This dataset was produced with a new open-
sourced platform for data gathering and annotation developed in conjunction with Surfrider
Foundation Europe, continuously growing with more data.

2. We propose a new algorithm specifically tailored to count in videos with fast cameramovements.
In a nutshell, DNN-based object detection is paired with a robust state space movement model
which uses optical flow to perform Bayesian filtering, while confidence regions built on
posterior predictive distributions are used for data association. This framework does not
require video annotations at training time: the multi-object tracking module does not require
supervision, only the DNN-based object detection does require annotated images. It also
fully leverages optical flow estimates and the uncertainty provided by Bayesian predictions to
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recover object identities even when detection recall is low. Contrary to existing MOT solutions,
this method ensures that tracks are stable enough to avoid repeated counting of the same
object.

3. We provide a set of video sequences where litter counts are known and depicted in real
conditions. For these videos only, litter positions are manually annotated at every frame in
order to carefully analyze performance. This allows us to build new informative count metrics.
We compare the count performance of our method against other MOT-based alternatives.

A first visual illustration of the second claim is presented via the following code chunks: on three
selected frames, we present a typical scenario where our strategy can avoid overcounting the same
object (we depict internal workings of our solution against the end result of the competitors).

---Already downloaded: saved_detections.pickle
---Already downloaded: saved_frames.pickle
EKF will be used for tracking.
Tracking...
Tracking done.

Figure 1: Our method : one object (red dot) is correctly detected at every frame and given a consistent
identity throughout the sequence with low location uncertainty (red ellipse). Next to it, a false
positive detection is generated at the first frame (brown dot) but immediatly lost in the following
frames: the associated uncertainty grows fast (brown ellipse). In our solution, this type of track will
not be counted. A third correctly detected object (pink) appears in the third frame and begins a new
track.

Tracking with SORT...
--- Begin SORT internal logs
Total Tracking took: 0.070 seconds for 360 frames or 5139.3 FPS
--- End

Figure 2: SORT : the resulting count is also 2, but both counts arise from tracks generated by the
same object, the latter not re-associated at all in the second frame. Additionally, the third object is
discarded (in post-processing) by their strategy.
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2 Related works

2.1 AI-automated counting

Counting from images has been an ongoing challenge in computer vision. Most works can be
divided into (i) detection-based methods where objects are individually located for counting, (ii)
density-based methods where counts are obtained by summing a predicted density map, and (iii)
regression-based methods where counts are directly regressed from input images (Chattopadhyay
et al. (2017)). While some of these works tackled the problem of counting in wild scenes (Arteta,
Lempitsky, and Zisserman (2016)), most are focused on pedestrian and crowd counting. Though
several works (Wu et al. (2020), Xiong, Shi, and Yeung (2017), Miao et al. (2019)) showed the relevance
of leveraging sequential inter-frame information to achieve better counts at every frame, none of
these methods actually attempt to produce global video counts.

2.2 Computer vision for macro litter monitoring

Automatic macro litter monitoring in rivers is still a relatively nascent initiative, yet there have
already been several attempts at using DNN-based object recognition tools to count plastic trash.
Recently, (Proença and Simões (2020)) used a combination of two Convolutional Neural Networks
(CNNs) to detect and quantify plastic litter using geospatial images from Cambodia. In (Wolf et al.
(2020)), reliable estimates of plastic density were obtained using Faster R-CNN (Ren et al. (2015)) on
images extracted from bridge-mounted cameras. For underwater waste monitoring, (Lieshout et al.
(2020)) assembled a dataset with bounding box annotations, and showed promising performance with
several object detectors. They later turned to generative models to obtain more synthetic data from a
small dataset @(Hong2020). While proving the practicality of deep learning for automatic waste
detection in various contexts, these works only provide counts for separate images of photographed
litter. To the best of our knowledge, no solution has been proposed to count litter directly in videos.

2.3 Multi-object tracking

Multi-object tracking usually involves object detection, data association and track management, with
a very large number of methods already existing before DNNs (Luo et al. (2021)). MOT approaches
now mostly differ in the level of supervision they require for each step: until recently, most successful
methods (like Bewley et al. (2016) have been detection-based, i.e. involving only a DNN-based object
detector trained at the image level and coupled with an unsupervised data association step. In specific
fields such as pedestrian tracking or autonomous driving, vast datasets now provide precise object
localisation and identities throughout entire videos (Caesar et al. (2020)) Dendorfer et al. (2020)).
Current state-of-the-art methods leverage this supervision via deep visual feature extraction (Wojke,
Bewley, and Paulus (2018), Zhang et al. (2021)) or even self-attention (Chu et al. (2021)) and graph
neural networks (Wang, Kitani, and Weng (2021)). For these applications, motion prediction may
be required, yet well-trained appearance models are usually enough to deal with detection failures
under simple motion, therefore the linear constant-velocity assumption often prevails (Ciaparrone et
al. (2020)).

In the case of macrolitter monitoring, however, available image datasets are still orders of magnitude
smaller, and annotated video datasets do not exist at all. Even more so, real shooting conditions
induce chaotic movements on the boat-embedded cameras. A close work of ours is that of (Fulton
et al. (2019)), who paired Kalman filtering with optical flow to yield fruit count estimates on entire
video sequences captured by moving robots. However, their video footage is captured at night
with consistent lighting conditions, backgrounds are largely similar across sequences, and camera
movements are less challenging. In our application context, we find that using MOT for the task of
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counting objects requires a new movement model, to take into account missing detections and large
camera movements.

3 Datasets for training and evaluation

Our main dataset of annotated images is used to train the object detector. Then, only for evalua-
tion purposes, we provide videos with annotated object positions and known global counts. Our
motivation is to avoid relying on training data that requires this resource-consuming process.

3.1 Images

3.1.1 Data collection

With help from volunteers, we compile photographs of litter stranded on river banks after increased
river discharge, shot directly from kayaks navigating at varying distances from the shore. Images
span multiple rivers with various levels of water current, on different seasons, mostly in southwestern
France. The resulting pictures depict trash items under the same conditions as the video footage we
wish to count on, while spanning a wide variety of backgrounds, light conditions, viewing angles
and picture quality.

3.1.2 Bounding box annotation

For object detection applications, the images are annotated using a custom online platform where
each object is located using a bounding box. In this work, we focus only on litter counting without
classification, however the annotated objects are already classified into specific categories which are
described in Figure 4.

A few samples are depicted below:

loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
15 images loaded
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3.2 Video sequences

3.2.1 Data collection

For evaluation, an on-field study was conducted with 20 volunteers to manually count litter along
three different riverbank sections in April 2021, on the Gave d’Oloron near Auterrive (Pyrénées-
Atlantiques, France), using kayaks. The river sections, each 500 meters long, were precisely defined
for their differences in background, vegetation, river current, light conditions and accessibility (see
Section 8.2 for aerial views of the shooting site and details on the river sections). In total, the three
videos amount to 20 minutes of footage at 24 frames per second (fps) and a resolution of 1920x1080
pixels.

3.2.2 Track annotation

On video footage, we manually recovered all visible object trajectories on each river section using an
online video annotation tool (more details in Section 8.2 for the precise methodology). From that, we
obtained a collection of distinct object tracks spanning the entire footage.
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4 Optical flow-based counting via Bayesian filtering and confidence
regions

Our counting method is divided into several interacting blocks. First, a detector outputs a set of
predicted positions for objects in the current frame. The second block is a tracking module designing
consistent trajectories of potential objects within the video. At each frame, a third block links the
successive detections together using confidence regions provided by the tracking module, proposing
distinct tracks for each object. A final postprocessing step only keeps the best tracks which are
enumerated to yield the final count.

4.1 Detector

4.1.1 Center-based anchor-free detection

In most benchmarks, the prediction quality of object attributes like bounding boxes is often used to
improve tracking. For counting, however, point detection is theoretically enough and advantageous
in many ways. First, to build large datasets, a method which only requires the lightest annotation
format may benefit from more data due to annotation ease. Second, contrary to previous popular
methods (Ren et al. (2015)) involving intricate mechanisms for bounding box prediction, center-based
and anchor-free detectors (Zhou, Wang, and Krähenbühl (2019), Law and Deng (2018)) only use
additional regression heads which can simply be removed for point detection. Adding to all this,
(Zhang et al. (2021)) highlight conceptual and experimental reasons to favor anchor-free detection in
tracking-related tasks.

For these reasons, we use a stripped version of CenterNet (Zhou, Wang, and Krähenbühl (2019))
where offset and bounding box regression heads are discarded to output bare estimates of center
positions on a coarse grid. An encoder-decoder network takes an input image 𝐼 ∈ [0, 1]𝑤×ℎ×3 (an
RGB image of width 𝑤 and height ℎ), and produces a heatmap 𝑌̂ ∈ [0, 1]⌊𝑤/𝑝⌋×⌊ℎ/𝑝⌋ such that 𝑌̂𝑥𝑦 is
the probability that (𝑥, 𝑦) is the center of an object (𝑝 being a stride coefficient). At inference, peak
detection and thresholding are applied to 𝑌̂, yielding the set of detections. The bulk of this detector
relies on the DLA34 architecture (Yu et al. (2018)). In a video, for each frame 𝐼𝑛 ∈ [0, 1]𝑤×ℎ×3 (where
𝑛 indexes the frame number), the detector outputs a set 𝒟𝑛 = {𝑧𝑖𝑛}1≤𝑖≤𝐷𝑛 where each 𝑧𝑖𝑛 = (𝑥 𝑖𝑛, 𝑦 𝑖𝑛)
specifies the coordinates of one of the 𝐷𝑛 detected objects.

4.2 Training

Training the detector is done similarly as in Proença and Simões (2020).

For every image, the corresponding set ℬ = {(𝑐𝑤𝑖 , 𝑐
ℎ
𝑖 , 𝑤𝑖, ℎ𝑖)}1≤𝑖≤𝐵 of 𝐵 annotated bounding boxes

– i.e. a center (𝑐𝑤𝑖 , 𝑐
ℎ
𝑖 ), a width 𝑤𝑖 and a height ℎ𝑖– is rendered into a ground truth heatmap 𝑌 ∈

[0, 1]⌊𝑤/𝑝⌋×⌊ℎ/𝑝⌋ by applying kernels at the bounding box centers and taking element-wise maximum.
For all 1 ≤ 𝑥 ≤ 𝑤/𝑝, 1 ≤ 𝑦 ≤ ℎ/𝑝, the ground truth at (𝑥, 𝑦) is

𝑌𝑥𝑦 = max
1≤𝑖≤𝐵

(exp {−
(𝑥 − 𝑐𝑤𝑖 )2 + (𝑦 − 𝑐ℎ𝑖 )2

2𝜎2𝑖
}) ,

where 𝜎𝑖 is a parameter depending on the size of the object. Training the detector is done by
minimizing a penalty-reduced weighted focal loss

ℒ(𝑌̂ , 𝑌 ) = −∑
𝑥,𝑦

𝛾𝛽𝑥𝑦 (1 − ̂𝑝𝑥𝑦)
𝛼
log ( ̂𝑝𝑥𝑦),
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where 𝛼, 𝛽 are hyperparameters and

( ̂𝑝𝑥𝑦, 𝛾𝑥𝑦) = {
(𝑌̂𝑥𝑦, 1) if 𝑌𝑥𝑦 = 1,
(1 − 𝑌̂𝑥𝑦, 1 − 𝑌𝑥𝑦) otherwise.

4.3 Bayesian tracking with optical flow

4.3.1 Optical flow

Between two timesteps 𝑛 − 1 and 𝑛, the optical flow Δ𝑛 is a mapping satisfying the following
consistency constraint (Paragios, Chen, and Faugeras (2006)):

̃𝐼𝑛[𝑢] = ̃𝐼𝑛−1[𝑢 + Δ𝑛(𝑢)],

where, in our case, ̃𝐼𝑛 denotes the frame 𝑛 downsampled to dimensions ⌊𝑤/𝑝⌋ × ⌊ℎ/𝑝⌋ and 𝑢 = (𝑥, 𝑦)
is a coordinate on that grid. To estimate Δ𝑛, we choose a simple unsupervised Gunner-Farneback
algorithm which does not require further annotations, see Farnebäck (2003) for details.

4.3.2 State space model

Using optical flow as a building block, we posit a state space model where estimates of Δ𝑛 are used
as a time and state-dependent offset for the state transition.

Let (𝑋𝑘)𝑘≥1 and (𝑍𝑘)𝑘≥1 be the true (but hidden) and observed (detected) positions of a target object
in ℝ2, respectively.

Considering the optical flow value associated with 𝑋𝑘−1 on the discrete grid of dimensions ⌊𝑤/𝑝⌋ ×
⌊ℎ/𝑝⌋, write

𝑋𝑘 = 𝑋𝑘−1 + Δ𝑘(⌊𝑋𝑘−1⌋) + 𝜂𝑘 (1)

and

𝑍𝑘 = 𝑋𝑘 + 𝜀𝑘,

where (𝜂𝑘)𝑘≥1 are i.i.d. centered Gaussian random variables with covariance matrix 𝑄 independent
of (𝜀𝑘)𝑘≥1 i.i.d. centered Gaussian random variables with covariance matrix 𝑅. In the following, 𝑄
and 𝑅 are assumed to be diagonal, and are hyperparameters set to values given in Section 8.3.1.

4.3.3 Approximations of the filtering distributions

Denoting 𝑢1∶𝑘 = (𝑢1, … , 𝑢𝑘) for any 𝑘 and sequence (𝑢𝑖)𝑖≥0, Bayesian filtering aims at computing
the conditional distribution of 𝑋𝑘 given 𝑍1∶𝑘, referred to as the filtering distribution. In the case
of linear and Gaussian state space models, this distribution is known to be Gaussian, and Kalman
filtering allows to update exactly the posterior mean 𝜇𝑘 = 𝔼[𝑋𝑘|𝑍1∶𝑘] and posterior variance matrix
Σ𝑘 = 𝕍[𝑋𝑘|𝑍1∶𝑘]. This algorithm and its extensions are prevalent and used extensively in time-series
and sequential-data analysis. As the transition model proposed in Equation 1 is nonlinear, Kalman
updates cannot be implemented and solving the target tracking task requires resorting to alternatives.
Many solutions have been proposed to deal with strong nonlinearities in the literature, such as
unscented Kalman filters (UKF) or Sequential Monte Carlo (SMC) methods (see Särkkä (2013) and
references therein). Most SMC methods have been widely studied and shown to be very effective
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even in presence of strongly nonlinear dynamics and/or non-Gaussian noise, however such sample-
based solutions are computationally intensive, especially in settings where many objects have to be
tracked and false positive detections involve unnecessary sampling steps. On the other hand, UKF
requires fewer samples and provides an intermediary solution in presence of mild nonlinearities.
In our setting, we find that a linearisation of the model Equation 1 yields approximation which is
computationally cheap and as robust on our data:

𝑋𝑘 = 𝑋𝑘−1 + Δ𝑘(⌊𝜇𝑘−1⌋) + 𝜕𝑋Δ𝑘(⌊𝜇𝑘−1⌋)(𝑋𝑘−1 − 𝜇𝑘−1) + 𝜂𝑘.

where 𝜕𝑋 is the derivative operator with respect to the 2-dimensional spatial input 𝑋.

This allows the implementation of Kalman updates on the linearised model, a technique named
extended Kalman filtering (EKF). For a more complete presentation of Bayesian and Kalman filtering,
please refer to Section 8.4. On the currently available data, we find that the optical flow estimates are
very informative and accurate, making this approximation sufficient. For completeness, we present
Section 8.5.1 an SMC-based solution and discuss the empirical differences and use-cases where the
latter might be a more relevant choice.

In any case, the state space model naturally accounts for missing observations, as the contribution of
Δ𝑘 in every transition ensures that each filter can cope with arbitrary inter-frame motion to keep
track of its target.

4.3.4 Generating potential object tracks

The full MOT algorithm consists of a set of single-object trackers following the previous model,
but each provided with distinct observations at every frame. These separate filters provide track
proposals for every object detected in the video.

4.4 Data association using confidence regions

Throughout the video, depending on various conditions on the incoming detections, existing trackers
must be updated (with or without a new observation) and others might need to be created. This
setup requires a third party data association block to link the incoming detections with the correct
filters.

At the frame 𝑛, a set of 𝐿𝑛 Bayesian filters track previously seen objects and a new set of detections𝒟𝑛
is provided by the detector. Denote by 1 ≤ ℓ ≤ 𝐿𝑛 the index of each filter at time 𝑛, and by convention
write 𝑍 ℓ

1∶𝑛−1 the previous observed positions associated with index ℓ (even if no observation is
available at some past times for that object). Let 𝜌 ∈ (0, 1) be a confidence level.

1. For every detected object 𝑧𝑖𝑛 ∈ 𝒟𝑛 and every filter ℓ, compute 𝑃(𝑖, ℓ) = ℙ(𝑍 ℓ
𝑛 ∈ 𝑉𝛿(𝑧𝑖𝑛) ∣ 𝑍 ℓ

1∶𝑛−1)
where 𝑉𝛿(𝑧) is the neighborhood of 𝑧 defined as the squared area of width 2𝛿 centered on 𝑧 (see
Section 8.5 for exact computations).

2. Using the Hungarian algorithm (Kuhn (1955)), compute the assignment between detections
and filters with 𝑃 as cost function, but discarding associations (𝑖, ℓ) having 𝑃(𝑖, ℓ) < 𝜌. Formally,
𝜌 represents the level of a confidence region centered on detections and we use 𝜌 = 0.5. Denote
𝑎𝜌 the resulting assignment map defined as 𝑎𝜌(𝑖) = ℓ if 𝑧𝑖𝑛 was associated with the ℓ-th filter,
and 𝑎𝜌(𝑖) = 0 if 𝑧𝑖𝑛 was not associated with any filter.

3. For 1 ≤ 𝑖 ≤ 𝐷𝑛, if 𝑎𝜌(𝑖) = ℓ, use 𝑧𝑖𝑛 as a new observation to update the ℓ-th filter. If 𝑎𝜌(𝑖) = 0,
create a new filter initialized from the prior distribution, i.e. sample the true location as a
Gaussian random variable with mean 𝑧𝑖𝑛 and variance 𝑅.
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4. For all filters ℓ′ which were not provided a new observation, update only the predictive law of
𝑋 ℓ′
𝑛 given 𝑍 ℓ′

1∶𝑛−1.

In other words, we seek to associate filters and detections by maximising a global cost built from the
predictive distributions of the available filters, but an association is only valid if its corresponding
predictive probability is high enough. Though the Hungarian algorithm is a very popular algorithm
in MOT, it is often used with the Euclidean distance or an Intersection-over-Union (IoU) criterion.
Using confidence regions for the distributions of 𝑍𝑛 given 𝑍1∶(𝑛−1) instead allows to naturally include
uncertainty in the decision process. Note that we deactivate filters whose posterior mean estimates
lie outside the image subspace in ℝ2.

A visual depiction of the entire pipeline (from detection to final association) is provided below. This
way of combining a set of Bayesian filters with a data association step that resorts on the most
likely hypothesis is a form of Global Nearest Neighbor (GNN) tracking. Another possibility is to
perform multi-target filtering by including the data association step directly into the probabilistic
model, as in Mahler (2003). A generalisation of single-target recursive Bayesian filtering, this class
of methods is grounded in the point process literature and well motivated theoretically. In case
of strong false positive detection rates, close and/or reappearing objects, practical benefits may be
obtained from these solutions. Finally, note that another well-motivated choice for 𝑃(𝑖, ℓ) could be to
use the marginal likelihood ℙ(𝑍 ℓ

𝑛 ∈ 𝑉𝛿(𝑧𝑖𝑛)), which is standard in modern MOT.

Figure 3: Visual representation of the tracking pipeline.

4.5 Counting

At the end of the video, the previous process returns a set of candidate tracks. For counting purposes,
we find that simple heuristics can be further applied to filter out tracks that do not follow actual objects.
More precisely, we observe that tracks of real objects usually contain more (i) observations and (ii)
streams of uninterrupted observations. Denote by 𝑇ℓ = {𝑛 ∈ ℕ ∣ ∃𝑧 ∈ 𝒟𝑛, 𝑍 ℓ

𝑛 = 𝑧} all timesteps where
the ℓ-th object is observed. To discard false counts according to (i) and (ii), we compute the moving
average𝑀𝜅

ℓ of 1𝑇ℓ using windows of size 𝜅, i.e. the sequence defined by𝑀
𝜅
ℓ [𝑛] =

1
𝜅 ∑𝑘∈[[𝑛−𝜅,𝑛+𝜅]] 1𝑇ℓ[𝑘].

We then build 𝑇 𝜅ℓ = {𝑛 ∈ 𝑇ℓ ∣ 𝑀𝜅
ℓ [𝑛] > 𝜈}, and defining 𝒩 = {ℓ ∣ |𝑇 𝜅ℓ | > 𝜏}, the final object count is |𝒩 |.

We choose 𝜈 = 0.6 while 𝜅, 𝜏 are optimized for best count performance (see Section 8.3.2 for a more
comprehensive study).
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5 Metrics for MOT-based counting

Counting in videos using embedded moving cameras is not a common task, and as such it requires
a specific evaluation protocol to understand and compare the performance of competing methods.
First, not all MOT metrics are relevant, even if some do provide insights to assist evaluation of count
performance. Second, considering only raw counts on long videos gives little information on which
of the final counts effectively arise from well detected objects.

5.1 Count-related MOT metrics

Popular MOT benchmarks usually report several sets of metrics such as ClearMOT (Bernardin and
Stiefelhagen (2008)) or IDF1 (Ristani et al. (2016)) which can account for different components of
tracking performance. Recently, (Luiten et al. (2021)) built the so-called HOTA metrics that allow
separate evaluation of detection and association using the Jaccard index. The following components
of their work are relevant to our task (we provide equation numbers in the original paper for formal
definitions).

5.1.1 Detection

First, when considering all frames independently, traditional detection recall (DetRe) and precision
(DetPr) can be computed to assess the capabilities of the object detector. Denoting with TP𝑛, FP𝑛,
FN𝑛 the number of true positive, false positive and false negative detections at frame 𝑛, respectively,
we define TP = ∑𝑛 TP𝑛, FP = ∑𝑛 FP𝑛 and FN = ∑𝑛 FN𝑛, then:

DetRe = TP
TP + FN

,

DetPr = TP
TP + FP

.

In classical object detection, those metrics are the main target. In our context, as the first step of the
system, this framewise performance impacts the difficulty of counting. However, we must keep in
mind that these metrics are computed framewise and might not guarantee anything at a video scale.
The next points illustrate that remark.

1. If both DetRe and DetPr are very high, objects are detected at nearly all frames and most
detections come from actual objects. Therefore, robustness to missing observations is high,
but even in this context computing associations may fail if camera movements are nontrivial.

2. For an ideal tracking algorithm which never counts individual objects twice and does not
confuse separate objects in a video, a detector capturing each object for only one frame
could theoretically be used. Thus, low DetRe could theoretically be compensated with robust
tracking.

3. If our approach can rule out faulty tracks which do not follow actual objects, then good counts
can still be obtained using a detector generating many false positives. Again, this suggests
that low DetPr may allow decent counting performance.

5.1.2 Association

HOTA association metrics are built to measure tracking performance irrespective of the detection
capabilities, by comparing predicted tracks against true object trajectories. In our experiments, we
compute the Association Recall (AssRe) and the Association Precision (AssPr). Several intermediate
quantities are necessary to introduce these final metrics. Following Luiten et al. (2021), we denote
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with prID the ID of a predicted track and gtID the ID of a ground truth track. Given 𝐶 all couples
of prID − gtID found among the true positive detections, and 𝑐 ∈ 𝐶 one of these couples, TPA(𝑐)
is the number of frames where prID is also associated with gtID, FPA(𝑐) is the number of frames
where prID is associated with another ground truth ID or with no ground truth ID, and FNA(𝑐) is the
number of frames where gtID is associated with another predicted ID or with no predicted ID. Then:

AssPr = 1
TP

∑
𝑐∈𝐶

TPA(𝑐)
TPA(𝑐) + FPA(𝑐)

,

AssRe = 1
TP

∑
𝑐∈𝐶

TPA(𝑐)
TPA(𝑐) + FNA(𝑐)

.

See Luiten et al. (2021) (fig. 2) for a clear illustration of these quantities.

In brief, a low AssPr implies that several objects are often mingled into only one track, resulting in
undercount. A low AssRe implies that single objects are often associated with multiple tracks. If
no method is used to discard redundant tracks this results in overcount. Conversely, association
precision (AssPr) measures how exclusive tracks are to each object (it decreases whenever a track
covers multiple objects). Again, it is useful to reconsider and illustrate the meaning of these metrics
in the context of MOT-based counting. Litter items are typically well separated on river banks, thus
predicted tracks are not expected to interfere much. This suggests that reaching high AssPr on our
footage is not challenging. Contrarily, AssRe is a direct measurement of the capability of the tracker
to avoid producing multiple tracks despite missing detections and challenging motion. A high AssRe
therefore typically avoids multiple counts for the same object, which is a key aspect of our work.

Nonetheless, association metrics are only computed for predicted tracks which can effectively be
matched with ground truth tracks. Consequently, AssRe does not account for tracks predicted
from streams of false positive detections generated by the detector (e.g. arising from rocks, water
reflections, etc). Since such tracks induce false counts, a tracker which produces the fewest is better,
but MOT metrics do not measure it.

5.2 Count metrics

Denoting by ̂N and N the respective predicted and ground truth counts for the validation material,
the error N̂ − N is misleading as no information is provided on the quality of the predicted counts.
Additionally, results on the original validation footage do not measure the statistical variability of
the proposed estimators.

5.2.1 Count decomposition

Define 𝑖 ∈ [[1,N]] and 𝑗 ∈ [[1, ̂N]] the labels of the annotated ground truth tracks and the predicted
tracks, respectively. At evaluation, we assign each predicted track to either none or at most one
ground truth track, writing 𝑗 → ∅ or 𝑗 → 𝑖 for the corresponding assignments. The association
is made whenever a predicted track 𝑖 overlaps with a ground truth track 𝑗 at any frame, i.e. for a
given frame a detection in 𝑖 is within a threshold 𝛼 of an object in 𝑗. We compute metrics for 20
values of 𝛼 ∈ [0.05𝛼𝑚𝑎𝑥, 0.95𝛼𝑚𝑎𝑥], with 𝛼𝑚𝑎𝑥 = 0.1√𝑤2 + ℎ2, then average the results, which is the
default method in HOTA to combine results at different thresholds. We keep this default solution, in
particular because our results are very consistent accross different thresholds in that range (we only
observe a slight decrease in performance for 𝛼 = 𝛼𝑚𝑎𝑥, where occasional false detections probably
start to lie below the threshold).
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Denote 𝐴𝑖 = {𝑗 ∈ [[1, ̂N]] ∣ 𝑗 → 𝑖} the set of predicted tracks assigned to the 𝑖-th ground truth track.
We define:

1. ̂Ntrue = ∑N
𝑖=1 1|𝐴𝑖|>0 the number of ground truth objects successfully counted.

2. ̂Nred = ∑N
𝑖=1 |𝐴𝑖| − ̂Ntrue the number of redundant counts per ground truth object.

3. ̂Nmis = N − ̂Ntrue the number of ground truth objects that are never effectively counted.
4. ̂Nfalse = ∑N̂

𝑗=1 1𝑗→∅ the number of counts which cannot be associated with any ground truth
object and are therefore considered as false counts.

Using these metrics provides a much better understanding of ̂N as

̂N = ̂Ntrue + ̂Nred + N̂false,

while ̂Nmis completely summarises the number of undetected objects.

Conveniently, the quantities can be used to define the count precision (CountPR) and count recall
(CountRe) as follows:

CountPR =
̂Ntrue

̂Ntrue + ̂Nred + ̂Nfalse
,

CountRe =
̂Ntrue

N̂true + ̂Nmis
,

which provide good summaries for the overall count quality, letting aside the tracking performance.

Note that these metrics and the associated decomposition are only defined if the previous assignment
between predicted and ground truth tracks can be obtained. In our case, predicted tracks never
overlap with several ground truth tracks (because true objects are well separated), and therefore
this assignment is straightforward. More involved metrics have been studied at the trajectory level
(see for example García-Fernández, Rahmathullah, and Svensson (2020) and the references therein),
though not specifically tailored to the restricted task of counting. For more complicated data, an
adaptation of such contributions into proper counting metrics could be valuable.

5.2.2 Statistics

Since the original validation set comprises only a few unequally long videos, only absolute results
are available. Splitting the original sequences into shorter independent sequences of equal length
allows to compute basic statistics. For any quantity N̂• defined above, we provide 𝜎̂N̂•

the associated
empirical standard deviations computed on the set of short sequences.

6 Experiments

We denote by 𝑆1, 𝑆2 and 𝑆3 the three river sections of the evaluation material and split the associated
footage into independent segments of 30 seconds. We further divide this material into two distinct
validation (6min30) and test (7min) splits.

To demonstrate the benefits of our work, we select two multi-object trackers and build competing
counting systems from them. Our first choice is SORT Bewley et al. (2016), which relies on Kalman
filteringwith velocity updated using the latest past estimates of object positions. Similar to our system,
it only relies on image supervision for training, and though DeepSORT (Wojke, Bewley, and Paulus
(2018)) is a more recent alternative with better performance, the associated deep appearance network
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cannot be used without additional video annotations. FairMOT (Zhang et al. (2021)), a more recent
alternative, is similarly intended for use with video supervision but allows self-supervised training
using only an image dataset. Built as a new baseline for MOT, it combines linear constant-velocity
Kalman filtering with visual features computed by an additional network branch and extracted at the
position of the estimated object centers, as introduced in CenterTrack (Zhou, Koltun, and Krähenbühl
(2020)). We choose FairMOT to compare our method to a solution based on deep visual feature
extraction.

Similar to our work, FairMOT uses CenterNet for the detection part and the latter is therefore trained
as in Section 4.2. We train it using hyperparameters from the original paper. The detection outputs
are then shared between all counting methods, allowing fair comparison of counting performance
given a fixed object detector. We run all experiments at 12fps, an intermediate framerate to capture
all objects while reducing the computational burden.

6.1 Detection

In the following section, we present the performance of the trained detector. Having annotated all
frames of the evaluation videos, we directly compute DetRe and DetPr on those instead of a test
split of the image dataset used for training. This allows realistic assessment of the detection quality
of our system on true videos that may include blurry frames or artifacts caused by strong motion.
We observe low DetRe, suggesting that objects are only captured on a fraction of the frames they
appear on. To better focus on count performance in the next sections, we remove segments that do
not generate any correct detection: performance on the remaining footage is increased and given by
DetRe∗ and DetPr∗.

DetRe* DetPr*

S1 37.2 60.7
S2 29.4 38.2
S3 35.1 53.6
All 35.5 55.1

6.2 Counts

To fairly compare the three solutions, we calibrate the hyperparameters of our postprocessing block
on the validation split and keep the values that minimize the overall count error ̂N for each of them
separately (see Section 8.3.2 for more information). All methods are found to work optimally at 𝜅 = 7,
but our solution requires 𝜏 = 8 instead of 𝜏 = 9 for other solutions: this lower level of thresholding
suggests that raw output of our tracking system is more reliable.

We report results using the count-related tracking metrics and count decompositions defined in
the previous section. To provide a clear but thorough summary of the performance, we report
AssRe, CountRe and CountPR as tabled values (the first gives a simple overview of the quality of
the predicted tacks while the latter two concisely summarise the count performance). For a more
detailed visualisation of the different types of errors, we plot the count error decomposition for all
sequences in a separate graph. Note that across all videos and all methods, we find AssPr between
98.6 and 99.2 which shows that this application context is unconcerned with tracks spanning multiple
ground truth objects, therefore we do not conduct a more detailed interpretation of AssPr values.

First, the higher values of AssRe confirm the robustness of our solution in assigning consistent
tracks to individual objects. This is directly reflected into the count precision performance - with an
overall value of CountPR 17.6 points higher than the next best method (SORT) - or even more so in
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the complete disappearance of orange (redundant) counts in the graph. A key aspect is that these
improvements are not counteracted by a lower CountRe: on the contrary, our tracker, which is more
stable, also captures more object (albeit still missing most of them, with a CountRe below 50%). Note
finally, that the strongest improvements are obtained for sequence 2 which is also the part with the
strongest motion.

AssRe CountRe σ(CountRe) CountPr σ(CountPr)

FairMOT 62.0 31.2 25.6 52.6 24.6
Sort 65.6 43.8 26.4 53.8 20.2
Ours 79.5 50.0 27.9 64.0 23.8

AssRe CountRe σ(CountRe) CountPr σ(CountPr)

FairMOT 8.7 12.5 35.4 50.0 0.0
Sort 20.7 12.5 35.4 33.3 0.0
Ours 72.7 50.0 0.0 100.0 0.0

AssRe CountRe σ(CountRe) CountPr σ(CountPr)

FairMOT 17.4 25.0 47.1 50.0 50.0
Sort 19.6 25.0 47.1 40.0 50.9
Ours 24.6 37.5 41.7 60.0 47.9

AssRe CountRe σ(CountRe) CountPr σ(CountPr)

FairMOT 56.7 27.1 31.6 52.0 30.2
Sort 59.8 35.4 32.7 50.0 30.2
Ours 76.0 47.9 28.8 67.6 32.0

6.2.0.1 Detailed results on individual segments
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7 Practical impact and future goals

We successfully tackled video object counting on river banks, in particular issues which could be
addressed independently of detection quality. Moreover the methodology developed to assess count
quality enables us to precisely highlight the challenges that pertain to video object counting on
river banks. Conducted in coordination with Surfrider Foundation Europe, an NGO specialized on
water preservation, our work marks an important milestone in a broader campaign for macrolitter
monitoring and is already being used in a production version of a monitoring system. That said,
large amounts of litter items are still not detected. Solving this problem is largely a question of
augmenting the object detector training dataset through crowdsourced images. A specific annotation
platform is online, thus the amount of annotated images is expected to continuously increase, while
training is provided to volunteers collecting data on the field to ensure data quality. Finally, several
expeditions on different rivers are already underway and new video footage is expected to be
annotated in the near future for better evaluation. All data is made freely available. Future goals
include downsizing the algorithm, a possibility given the architectural simplicity of anchor-free
detection and the relatively low computational complexity of EKF. In a citizen science perspective, a
fully embedded version for portable devices will allow a larger deployment. The resulting field data
will help better understand litter origin, allowing to model and predict litter density in non surveyed
areas. Correlations between macro litter density and environmental parameters will be studied (e.g.,
population density, catchment size, land use and hydromorphology). Finally, our work naturally
benefits any extension of macrolitter monitoring in other areas (urban, coastal, etc) that may rely on
a similar setup of moving cameras.

8 Supplements

8.1 Details on the image dataset

8.1.1 Categories

In this work, we do not seek to precisely predict the proportions of the different types of counted
litter. However, we build our dataset to allow classification tasks. Though litter classifications
built by experts already exist, most are based on semantic rather than visual features and do not
particularly consider the problem of class imbalance, which makes statistical learning more delicate.
In conjunction with water pollution experts, we therefore define a custom macrolitter taxonomy
which balances annotation ease and pragmatic decisions for computer vision applications. This
classification, depicted in Figure 4 can be understood as follows.

1. We define a set of frequently observed classes that annotateors can choose from, divided into:
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• Classes for rigid and easily recognisable items which are often observed and have definite
shapes

• Classes for fragmented objects which are often found along river banks but whose aspects
are more varied

2. We define two supplementary categories used whenever the annotater cannot classify the item
they are observing in an image using classes given in 1.

• A first category is used whenever the item is clearly identifiable but its class is not
proposed. This will ensure that our classification can be improved in the future, as images
with items in this category will be checked regularly to decide whether a new class needs
to be created.

• Another category is used whenever the annotater does not understand the item they
are seeing. Images containing items denoted as such will not be used for applications
involving classification.

Figure 4: Trash categories defined to facilitate porting to a counting system that allows trash
identification

8.2 Details on the evaluation videos

8.2.1 River segments

In this section, we provide further details on the evaluation material. Figure 5 shows the setup and
positioning of the three river segments 𝑆1, 𝑆2 and 𝑆3 used to evaluate the methods. The segments
differ in the following aspects.

• Segment 1: Medium current, high and dense vegetation not obstructing vision of the right
riverbank from watercrafts, extra objects installed before the field experiment.

• Segment 2: High current, low and dense vegetation obstructing vision of the right riverbank
from watercrafts.

• Segment 3: Medium current, high and little vegetation not obstructing vision of the left
riverbank from watercrafts.

8.2.1.1 Track annotation protocol
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Figure 5: Aerial view of the three river segments of the evaluation material

To annotate tracks on the evaluation sequences, we used the online tool “CVAT” which allows to
locate bounding boxes on video frames and propagate them in time. The following items provide
further details on the exact annotation process.

• Object tracks start whenever a litter item becomes fully visible and identifiable by the naked
eye.

• Positions and sizes of objects are given at nearly every second of the video with automatic
interpolation for frames in-between: this yields clean tracks with precise positions at 24fps.

• We do not provide inferred locations when an object is fully occluded, but tracks restart with
the same identity whenever the object becomes visible again.

• Tracks stop whenever an object becomes indistinguishable and will not reappear again.

8.3 Implementation details for the tracking module

8.3.1 Covariance matrices for state and observation noises

In our state space model, 𝑄 models the noise associated with the movement model we posit in
Section 4.3 involving optical flow estimates, while 𝑅models the noise associated with the observation
of the true position via our object detector. An attempt to estimate the diagonal values of these
matrices was the following.

• To estimate 𝑅, we computed a mean 𝐿2 error between the known positions of objects and the
associated predictions by the object detector, for images in our training dataset.

• To estimate 𝑄, we built a small synthetic dataset of consecutive frames taken from videos,
where positions of objects in two consecutive frames are known. We computed a mean 𝐿2
error between the known positions in the second frame and the positions estimated by shifting
the positions in the first frame with the estimated optical flow values.

This led to 𝑅00 = 𝑅11 = 1.1, 𝑄00 = 4.7 and 𝑄11 = 0.9, for grids of dimensions ⌊𝑤/𝑝⌋×⌊ℎ/𝑝⌋ = 480×270.
All other coefficients were not estimated and supposed to be 0.

An important remark is that though we use these values in practice, we found that tracking results
are largely unaffected by small variations of 𝑅 and 𝑄. As long as values are meaningful relative to the
image dimensions and the size of the objects, most noise levels show relatively similar performance.
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8.3.2 Influence of 𝜏 and 𝜅

An understanding of 𝜅, 𝜏 and 𝜈 can be stated as follows. For any track, given a value for 𝜅 and 𝜈, an
observation at time 𝑛 is only kept if there are also 𝜈 ⋅ 𝜅 observations in the temporal window of size 𝜅
that surrounds 𝑛 (windows are centered around 𝑛 except at the start and end of the track). The track
is only counted if the remaining number of observations is strictly higher than 𝜏. At a given 𝜈 > 0.5,
𝜅 and 𝜏 should ideally be chosen to jointly decrease N̂false and ̂Nred as much as possible without
increasing ̂Nmis (true objects become uncounted if tracks are discarded too easily).

In the following code cell, we plot the error decomposition of the counts for several values of 𝜅 and
𝜏 with 𝜈 = 0.6 for the outputs of the three different trackers. We choose 𝜈 = 0.7 and compute the
optimal point as the one which minimizes the overall count error ̂N(= N̂mis + ̂Nred + N̂false).
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Best parameters for Ours: (kappa, tau) = (7, 8)

8.4 Bayesian filtering

Considering a state space model with (𝑋𝑘, 𝑍𝑘)𝑘≥0 the random processes for the states and observations,
respectively, the filtering recursions are given by:

• The predict step: 𝑝(𝑥𝑘+1|𝑧1∶𝑘) = ∫ 𝑝(𝑥𝑘+1|𝑥𝑘)𝑝(𝑥𝑘|𝑧1∶𝑘)d𝑥𝑘.
• The update step: 𝑝(𝑥𝑘+1|𝑧1∶𝑘+1) ∝ 𝑝(𝑧𝑘+1|𝑥𝑘+1)𝑝(𝑥𝑘+1|𝑧1∶𝑘).

The recursions are intractable in most cases, but when the model is linear and Gaussian, i.e. such
that:
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𝑋𝑘 = 𝐴𝑘𝑋𝑘−1 + 𝑎𝑘 + 𝜂𝑘

𝑍𝑘 = 𝐵𝑘𝑋𝑘 + 𝑏𝑘 + 𝜖𝑘

with 𝜂𝑘 ∼ 𝒩 (0, 𝑄𝑘) and 𝜖𝑘 ∼ 𝒩 (0, 𝑅𝑘), then the distribution of 𝑋𝑘 given 𝑍1∶𝑘 is a Gaussian 𝒩 (𝜇𝑘, Σ𝑘)
following:

• 𝜇𝑘|𝑘−1 = 𝐴𝑘𝜇𝑘−1 + 𝑎𝑘 and Σ𝑘|𝑘−1 = 𝐴𝑘Σ𝑘−1𝐴𝑇
𝑘 + 𝑄𝑘 (Kalman predict step),

• 𝜇𝑘 = 𝜇𝑘|𝑘−1 + 𝐾𝑘 [𝑍𝑘 − (𝐵𝑘𝜇𝑘|𝑘−1 + 𝑏𝑘)] and Σ𝑘 = (𝐼 − 𝐾𝑘𝐵𝑘)Σ𝑘|𝑘−1 (Kalman update step),

where 𝐾𝑘 = Σ𝑘|𝑘−1𝐵𝑇𝑘(𝐵𝑘Σ𝑘|𝑘−1𝐵
𝑇
𝑘 + 𝑅𝑘)−1.

In the case of the linearized model in Section 4.3.2, EKF consists in applying these updates with:

𝐴𝑘 = (𝐼 + 𝜕𝑋Δ𝑘(⌊𝜇𝑘−1⌋),

𝑎𝑘 = Δ𝑘(⌊𝜇𝑘−1⌋) − 𝜕𝑋Δ𝑘(⌊𝜇𝑘−1⌋)𝜇𝑘−1,

𝑄𝑘 = 𝑄, 𝑅𝑘 = 𝑅,

𝐵𝑘 = 𝐼 , 𝑏𝑘 = 0.

8.5 Computing the confidence regions

In words, 𝑃(𝑖, ℓ) is the mass in 𝑉𝛿(𝑧𝑖𝑛) ⊂ ℝ2 of the probability distribution of 𝑍 ℓ
𝑛 given 𝑍 ℓ

1∶𝑛−1. It is
related to the filtering distribution at the previous timestep via

𝑝(𝑧𝑛|𝑧1∶𝑛−1) = ∫∫𝑝(𝑧𝑛|𝑥𝑛)𝑝(𝑥𝑛|𝑥𝑛−1)𝑝(𝑥𝑛−1|𝑧1∶𝑛−1)d𝑥𝑛d𝑥𝑛−1

When using EKF, this distribution is a multivariate Gaussian whose moments can be analytically
obtained from the filtering mean and variance and the parameters of the linear model, i.e.

𝔼 [𝑍 ℓ
𝑛 |𝑍 ℓ

1∶𝑛−1] = 𝐵𝑘(𝐴𝑘𝜇𝑘−1 + 𝑎𝑘) + 𝑏𝑘

and

𝕍[𝑍 ℓ
𝑛 |𝑍 ℓ

1∶𝑛−1] = 𝐵𝑘(𝐴𝑘Σ𝑘𝐴𝑇
𝑘 + 𝑄𝑘)𝐵𝑇𝑘 + 𝑅𝑘

following the previously introduced notation. Note that given the values of 𝐴𝑘, 𝐵𝑘, 𝑎𝑘, 𝑏𝑘 in our model
these equations are simplified in practice, e.g. 𝐵𝑘 = 𝐼 , 𝑏𝑘 = 0 and 𝐴𝑘𝜇𝑘−1 + 𝑎𝑘 = 𝜇𝑘−1 + Δ𝑘(⌊𝜇𝑘−1⌋).

In ℝ2, values of the cumulative distribution function (cdf) of a multivariate Gaussian distribution
are easy to compute. Denote with 𝐹 ℓ𝑛 the cdf of 𝕃ℓ𝑛. If 𝑉𝛿(𝑧) is a squared neighborhood of size 𝛿 and
centered on 𝑧 = (𝑥, 𝑦) ∈ ℝ2, then, denoting with 𝕃ℓ𝑛 the distribution of 𝑍 ℓ

𝑛 given 𝑍 ℓ
1∶𝑛−1:

𝕃ℓ𝑛(𝑉𝛿(𝑧)) = 𝐹 ℓ𝑛(𝑥 + 𝛿, 𝑦 + 𝛿) + 𝐹 ℓ𝑛(𝑥 − 𝛿, 𝑦 − 𝛿) − [𝐹 ℓ𝑛(𝑥 + 𝛿, 𝑦 − 𝛿) + 𝐹 ℓ𝑛(𝑥 − 𝛿, 𝑦 + 𝛿)]

This allows easy computation of 𝑃(𝑖, ℓ) = 𝕃ℓ𝑛(𝑉𝛿(𝑧𝑖𝑛)).
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8.5.1 Impact of the filtering algorithm

An advantage of the data association method proposed in Section 4.4 is that it is very generic and
does not constrain the tracking solution to any particular choice of filtering algorithm. As for EKF,
UKF implementations are already available to compute the distribution of 𝑍𝑘 given 𝑍1∶𝑘−1 and the
corresponding confidence regions (see Section 8.3 above). We propose a solution to compute this
distribution when SMC is used, and performance comparisons between the EKF, UKF and SMC
versions of our trackers are discussed.

8.5.2 SMC-based tracking

Denote ℚ𝑘 the filtering distribution (ie. that of 𝑍𝑘 given 𝑋1∶𝑘) for the HMM (𝑋𝑘, 𝑍𝑘)𝑘≥1 (omitting the
dependency on the observations for notation ease). Using a set of samples {𝑋 𝑖

𝑘}1≤𝑖≤𝑁 and importance
weights {𝑤 𝑖

𝑘}1≤𝑖≤𝑁, SMC methods build an approximation of the following form:

ℚ̂𝑆𝑀𝐶
𝑘 (d𝑥𝑘) =

𝑁
∑
𝑖=1

𝑤 𝑖
𝑘𝛿𝑋 𝑖

𝑘
(d𝑥𝑘) .

Contrary to EKF and UKF, the distribution 𝕃𝑘 of 𝑍𝑘 given 𝑍1∶𝑘−1 is not directly available but can
be obtained via an additional Monte Carlo sampling step. Marginalizing over (𝑋𝑘−1, 𝑋𝑘) and using
the conditional independence properties of HMMs, we decompose 𝕃𝑘 using the conditional state
transition𝕄𝑘(𝑥, d𝑥′) and the likelihood of 𝑍𝑘 given 𝑋𝑘, denoted by 𝔾𝑘(𝑥, d𝑧):

𝕃𝑘(d𝑧𝑘) = ∫∫𝔾𝑘(𝑥𝑘, d𝑧𝑘)𝕄𝑘(𝑥𝑘−1, d𝑥𝑘)ℚ𝑘−1(d𝑥𝑘−1) .

Replacing ℚ𝑘−1 with ℚ̂𝑆𝑀𝐶
𝑘−1 into the previous equation yields

𝕃̂𝑆𝑀𝐶
𝑘 (d𝑧𝑘) =

𝑁
∑
𝑘=1

𝑤 𝑖
𝑘 ∫𝔾𝑘(𝑥𝑘, d𝑧𝑘)𝕄𝑘(𝑋 𝑖

𝑘−1, d𝑥𝑘) .

In ourmodel, the state transition is Gaussian and therefore easy to sample from. Thus an approximated
predictive distribution 𝕃̂𝑘 can be obtained using Monte Carlo estimates built from random samples
{𝑋 𝑖,𝑗

𝑘 }1≤𝑗≤𝑀1≤𝑖≤𝑁 drawn from𝕄𝑘(𝑋 𝑖
𝑘−1, d𝑥𝑘). This leads to

𝕃̂𝑘(d𝑧𝑘) =
𝑁
∑
𝑖=1

𝑀
∑
𝑗=1

𝑤 𝑖
𝑘𝔾𝑘(𝑋

𝑖,𝑗
𝑘 , d𝑧𝑘) .

Since the observation likelihood is also Gaussian, 𝕃̂𝑘 is a Gaussian mixture, thus values of 𝕃̂𝑘(A)
for any A ⊂ ℝ2 can be computed by applying the tools from Section 8.5 to all mixture components.
Similar to EKF and UKF, this approximated predictive distribution is used to recover object identities
via 𝕃̂ℓ𝑛(𝑉𝛿(𝑧𝑖𝑛)) computed for all incoming detections 𝒟𝑛 = {𝑧𝑖𝑛}1≤𝑖≤𝐷𝑛 and each of the 1 ≤ ℓ ≤ 𝐿𝑛
filters, where 𝕃̂ℓ𝑛 is the predictive distribution associated with the ℓ-th filter.

8.5.3 Performance comparison

In theory, sampling-based methods like UKF and SMC are better suited for nonlinear state space
models like the one we propose in Section 4.3.2. However, we observe very few differences in count
results when upgrading from EKF to UKF to SMC. In practise, there is no difference at all between our
EKF and UKF implementations, which show strictly identical values for ̂Ntrue, ̂Nfalse and ̂Nred. For
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the SMC version, values for ̂Nfalse and ̂Nred improve by a very small amount (2 and 1, respectively),
but ̂Nmis is slightly worse (one more object missed), and these results depend loosely on the number
of samples used to approximate the filtering distributions and the number of samples for the Monte
Carlo scheme. Therefore, our motion estimates via the optical flow Δ𝑛 prove very reliable in our
application context, so much that EKF, though suboptimal, brings equivalent results. This comforts
us into keeping it as a faster and computationally simpler option. That said, this conclusion might
not hold in scenarios where camera motion is even stronger, which was our main motivation to
develop a flexible tracking solution and to provide implementations of UKF and SMC versions. This
allows easier extension of our work to more challenging data.
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