
ISSN 2824-7795

Geometric-Based Pruning Rules for
Change Point Detection in Multiple
Independent Time Series

Liudmila Pishchagina1 Université Paris-Saclay, CNRS, Université d’Évry-Val-d’Essonne,
Laboratoire de Mathématiques et Modélisation d’Évry, France

Guillem Rigaill Université Paris-Saclay, CNRS, Université d’Évry-Val-d’Essonne, Laboratoire de
Mathématiques et Modélisation d’Évry, France

Université Paris-Saclay, CNRS, INRAE, Université d’Évry-Val-d’Essonne, Institute of Plant Sciences
Paris-Saclay (IPS2), Orsay, France

Vincent Runge Université Paris-Saclay, CNRS, Université d’Évry-Val-d’Essonne, Laboratoire de
Mathématiques et Modélisation d’Évry, France

Date published: 2024-07-12 Last modified: 2025-06-25

Abstract

We address the challenge of identifying multiple change points in a group of independent
time series, assuming these change points occur simultaneously in all series and their number is
unknown. The search for the best segmentation can be expressed as a minimization problem
over a given cost function. We focus on dynamic programming algorithms that solve this
problem exactly. When the number of changes is proportional to data length, an inequality-based
pruning rule encoded in the PELT algorithm leads to a linear time complexity. Another type of
pruning, called functional pruning, gives a close-to-linear time complexity whatever the number
of changes, but only for the analysis of univariate time series. We propose a few extensions of
functional pruning for multiple independent time series based on the use of simple geometric
shapes (balls and hyperrectangles). We focus on the Gaussian case, but some of our rules can be
easily extended to the exponential family. In a simulation study we compare the computational
efficiency of different geometric-based pruning rules. We show that for a small number of time
series some of them ran significantly faster than inequality-based approaches in particular when
the underlying number of changes is small compared to the data length.

Keywords: multivariate time series, multiple change point detection, dynamic programming, func-
tional pruning, computational geometry

Contents

Introduction 2

1 Functional Pruning for Multiple Time Series 3
1.1 Model and Cost . 3
1.2 Functional Pruning Optimal Partitioning Algorithm 4
1.3 Geometric Formulation of Functional Pruning . 6

2 Geometric Functional Pruning Optimal Partitioning 8
2.1 General Principle of GeomFPOP . 8

1Corresponding author: liudmila.pishchagina@univ-evry.fr

1

https://orcid.org/0000-0002-7176-7511
https://orcid.org/0000-0002-4857-1799
mailto:liudmila.pishchagina@univ-evry.fr

3 Approximation Operators ⋂�̃� and ∖�̃� 11
3.1 S-type Approximation . 11
3.2 R-type Approximation . 12

4 Simulation Study of GeomFPOP 14
4.1 The Number of Change Point Candidates stored over Time 14
4.2 Empirical Time Complexity of GeomFPOP . 15
4.3 Empirical Time Complexity of a Randomized GeomFPOP 16
4.4 Empirical Complexity of the Algorithm as a Function of 𝑝 17
4.5 Run Time as a Function of the Number of Segments 17

Acknowledgments 18

5 Supplements 18
5.1 Examples of Likelihood-Based Cost Functions . 18
5.2 Intersection and Inclusion of Two p-balls . 19
5.3 Intersection and Inclusion Tests . 19
5.4 Proof of Proposition 3.2 . 21
5.5 Optimization Strategies for GeomFPOP (R-type) . 21
5.6 The number of change point candidates in time: GeomFPOP vs. PELT 23
5.7 Run time of the algorithm by multivariate time series with changes in subset of

dimension . 23

References 23

Introduction

A National Research Council report (Data et al. 2013) has identified change point detection as one
of the “inferential giants” in massive data analysis. Detecting change points, either a posteriori or
online, is important in areas as diverse as bioinformatics (Olshen et al. 2004; Picard et al. 2005),
econometrics (Bai and Perron 2003; Aue et al. 2006), medicine (Bosc et al. 2003; Staudacher et al.
2005; Malladi, Kalamangalam, and Aazhang 2013), climate and oceanography (Reeves et al. 2007;
Ducré-Robitaille, Vincent, and Boulet 2003; Killick, Fearnhead, and Eckley 2012; Naoki and Kurths
2010), finance (Andreou and Ghysels 2002; Fryzlewicz 2014), autonomous driving (Galceran et al.
2017), entertainment (Rybach et al. 2009; Radke et al. 2005; Davis, Lee, and Rodriguez-Yam 2006),
computer vision (Ranganathan 2012) or neuroscience (Jewell, Fearnhead, and Witten 2019). The most
common and prototypical change point detection problem is that of detecting changes in mean of a
univariate Gaussian signal and a large number of approaches have been proposed to perform this task
(see among many others (Yao 1988; Lebarbier 2005; Harchaoui and Lévy-Leduc 2010; Frick, Munk,
and Sieling 2013; Anastasiou and Fryzlewicz 2022) and the reviews (Truong, Oudre, and Vayatis 2020;
Aminikhanghahi and Cook 2017)).

Penalized cost methods. Some of these methods optimize a penalized cost function (see for example
(Lebarbier 2005; Auger and Lawrence 1989; Jackson et al. 2005; Killick, Fearnhead, and Eckley 2012;
Rigaill 2015; Maidstone et al. 2017). These methods have good statistical guarantees (Yao 1988;
Lavielle and Moulines 2000; Lebarbier 2005) and have shown good performances in benchmark
simulation (Fearnhead, Maidstone, and Letchford 2018) and on many applications (Lai et al. 2005;
Liehrmann, Rigaill, and Hocking 2021). From a computational perspective, they rely on dynamic
programming algorithms that are at worst quadratic in the size of the data, 𝑛. However using
inequality-based and functional pruning techniques (Rigaill 2015; Killick, Fearnhead, and Eckley
2012; Maidstone et al. 2017) the average run times are typically much smaller allowing to process

2

very large profiles (𝑛 > 105) in a matter of seconds or minutes. In detail, for one time series:

• if the number of change points is proportional to 𝑛 both PELT (Killick, Fearnhead, and Eckley
2012) (a version of OP which uses inequality-based pruning) and FPOP (Maidstone et al. 2017)
(a version of OP which uses functional pruning as in (Rigaill 2015)) are on average linear
(Killick, Fearnhead, and Eckley 2012; Maidstone et al. 2017);

• if the number of change points is fixed, FPOP is quasi-linear (on simulations) while PELT is
quadratic (Maidstone et al. 2017).

Multivariate extensions. This paper focuses on identifying multiple change points in a multivariate
independent time series. We assume that changes occur simultaneously in all dimensions, their
number is unknown, and the cost function or log-likelihood of a segment (denoted as 𝒞) can be
expressed as a sum across all dimensions 𝑝. Informally, that is,

𝒞(𝑠𝑒𝑔𝑚𝑒𝑛𝑡) =
𝑝
∑
𝑘=1

𝒞(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, time series 𝑘) .

In this context, the PELT algorithm can easily be extended for multiple time series. However, as for
the univariate case, it will be algorithmically efficient only if the number of non-negligible change
points is comparable to 𝑛. In this paper, we study the extension of functional pruning techniques
(and more specifically FPOP) to the multivariate case.

At each iteration, FPOP updates the set of parameter values for which a change position 𝜏 is optimal.
As soon as this set is empty the change is pruned. For univariate time series, this set is a union of
intervals in ℝ. For parametric multivariate models, this set is equal to the intersection and difference
of convex sets in ℝ𝑝 (Runge 2020). It is typically non-convex, hard to update, and deciding whether
it is empty or not is not straightforward.

In this work, we present a new algorithm, called Geometric Functional Pruning Optimal Partitioning
(GeomFPOP). The idea of our method consists in approximating the sets that are updated at each
iteration of FPOP using simpler geometric shapes. Their simplicity of description and simple updating
allow for a quick emptiness test.

The paper has the following structure. In Section 1 we introduce the penalized optimization problem
for segmented multivariate time series in case where the number of changes is unknown. We then
review the existing pruned dynamic programming methods for solving this problem. We define the
geometric problem that occurs when using functional pruning. The new method, called GeomFPOP,
is described in Section 2 and based on approximating intersection and exclusion set operators. In
Section 3 we introduce two approximation types (sphere-like and rectangle-like) and define the
approximation operators for each of them. We then compare in Section 4 the empirical efficiency of
GeomFPOP with PELT on simulated data.

1 Functional Pruning for Multiple Time Series

1.1 Model and Cost

We consider the problem of change point detection in multiple independent time series of length 𝑛
and dimension 𝑝, while assuming simultaneous changes in all univariate time series and an unknown
number of changes. Our aim is to partition data into segments, such that in each segment the
parameter associated to each time series is constant. For a time series 𝑦 we write 𝑦 = 𝑦1∶𝑛 =
(𝑦1, … , 𝑦𝑛) ∈ (ℝ𝑝)𝑛 with 𝑦𝑘𝑖 the 𝑘-th component of the 𝑝-dimensional point 𝑦𝑖 ∈ ℝ𝑝 in position 𝑖
in vector 𝑦1∶𝑛. We also use the notation 𝑦𝑖∶𝑗 = (𝑦𝑖, … , 𝑦𝑗) to denote points from index 𝑖 to 𝑗. If we

3

assume that there are 𝑀 change points in a time series, this corresponds to time series splits into
𝑀 + 1 distinct segments. The data points of each segment 𝑚 ∈ {1, … ,𝑀 + 1} are generated by
independent random variables from a multivariate distribution with the segment-specific parameter
𝜃𝑚 = (𝜃1𝑚, … , 𝜃𝑝𝑚) ∈ ℝ𝑝. A segmentation with 𝑀 change points is defined by the vector of integers
𝜏 = (𝜏0 = 0, 𝜏1, … , 𝜏𝑀, 𝜏𝑀+1 = 𝑛). Segments are given by the sets of indices {𝜏𝑖 + 1,… , 𝜏𝑖+1} with 𝑖 in
{0, 1, … ,𝑀}.

We define the set 𝑆𝑀𝑛 of all possible change point locations related to the segmentation of data points
between positions 1 to 𝑛 in 𝑀 + 1 segments as

𝑆𝑀𝑛 = {𝜏 = (𝜏0, 𝜏1, … , 𝜏𝑀, 𝜏𝑀+1) ∈ ℕ𝑀+2|0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑀 < 𝜏𝑀+1 = 𝑛} .

For any segmentation 𝜏 in 𝑆𝑀𝑛 we define its size as |𝜏| = 𝑀. We denote 𝒮∞
𝑛 as the set of all possible

segmentations of 𝑦1∶𝑛:

𝒮∞
𝑛 = ⋃

𝑀<𝑛
𝑆𝑀𝑛 ,

and take the convention that 𝑆∞−1
𝑛 = 𝑆∞𝑛 . In our case the number of changes 𝑀 is unknown, and has

to be estimated.

Many approaches to detecting change points define a cost function for segmentation using the
negative log-likelihood (times two). Here the negative log-likelihood (times two) calculated at the
data point 𝑦𝑗 is given by function 𝜃 ↦ Ω(𝜃, 𝑦𝑗), where 𝜃 = (𝜃1, … , 𝜃𝑝) ∈ ℝ𝑝. Over a segment from 𝑖 to
𝑡, the parameter remains the same and the segment cost 𝒞 is given by

𝒞(𝑦𝑖∶𝑡) = min
𝜃∈ℝ𝑝

𝑡
∑
𝑗=𝑖

Ω(𝜃, 𝑦𝑗) = min
𝜃∈ℝ𝑝

𝑡
∑
𝑗=𝑖

(
𝑝
∑
𝑘=1

𝜔(𝜃𝑘, 𝑦𝑘𝑗)) , (1)

with 𝜔 the atomic likelihood function associated with Ω for each univariate time series. This
decomposition is made possible by the independence hypothesis between univariate time series.
Notice that it could have been dimension-dependent with a mixture of different distributions (Gauss,
Poisson, negative binomial, etc.). In our study, we use the same data model for all dimensions.

In summary, the methodology we propose relies on the assumption that:

1. the cost is point additive (see first equality in equation (1));
2. the per-point cost Ω has a simple decomposition : Ω(𝜃) = ∑𝑝 𝜔(𝜃𝑝);
3. the 𝜔 is convex.

We get that for any 𝜏 ∈ 𝒮∞
𝑛 its segmentation cost is the sum of segment cost functions:

|𝜏|
∑
𝑖=0

𝒞(𝑦(𝜏𝑖+1)∶𝜏𝑖+1) .

We consider a penalized version of the segment cost by a penalty 𝛽 > 0, as the zero penalty case would
lead to segmentation with 𝑛 segments. The optimal penalized cost associated with our segmentation
problem is then defined by

�̂�𝑛 = min
𝜏∈𝑆∞𝑛

|𝜏|
∑
𝑖=0

{𝒞 (𝑦(𝜏𝑖+1)∶𝜏𝑖+1) + 𝛽} . (2)

4

The optimal segmentation 𝜏 is obtained by the argminimum in equation (2).

Various penalty forms have been proposed in the literature (Yao 1988; Killick, Fearnhead, and Eckley
2012; Zhang and Siegmund 2007; Lebarbier 2005; Verzelen et al. 2020). Summing over all segments
in Equation (2), we end up with a global penalty of the form 𝛽(𝑀 + 1). Hence, our model only allows
penalties that are proportional to the number of segments (Yao 1988; Killick, Fearnhead, and Eckley
2012). Penalties such as (Zhang and Siegmund 2007; Lebarbier 2005; Verzelen et al. 2020) cannot be
considered with our algorithm.

By default, we set the penalty 𝛽 for 𝑝-variate time series of length 𝑛 using the Schwarz Information
Criterion from (Yao 1988) (calibrated to the 𝑝 dimensions), as 𝛽 = 2𝑝𝜎2 log 𝑛. In practice, if the
variance 𝜎2 is unknown, it is replaced by an appropriate estimation (e.g. (Hampel 1974; Hall, Kay,
and Titterington 1990) as in (Lavielle and Lebarbier 2001; Liehrmann et al. 2023)).

1.2 Functional Pruning Optimal Partitioning Algorithm

The idea of the Optimal Partitioning (OP) method (Jackson et al. 2005) is to search for the last
change point defining the last segment in data 𝑦1∶𝑡 at each iteration (with 𝑄0 = 0), which leads to the
recursion:

𝑄𝑡 = min
𝑖∈{0,…,𝑡−1}

(𝑄𝑖 + 𝒞(𝑦(𝑖+1∶𝑡) + 𝛽) .

The Pruned Exact Linear Time (PELT) method, introduced in (Killick, Fearnhead, and Eckley 2012),
uses inequality-based pruning. It essentially relies on the assumption that splitting a segment in two
is always beneficial in terms of cost, this is 𝐶(𝑦(𝑖+1)∶𝑗) + 𝐶(𝑦(𝑗+1)∶𝑡) ≤ 𝐶(𝑦(𝑖+1)∶𝑡). This assumption is
always true in our setting. PELT considers each change point candidate sequentially and decides
whether 𝑖 can be excluded from the set of changepoint candidates if �̂�𝑖 +𝒞(𝑦(𝑖+1)∶𝑡) ≥ �̂�𝑡 , as 𝑖 cannot
appear as the optimal change point in future iterations.

Functional description. In the FPOP method we introduce a last segment parameter 𝜃 = (𝜃1, … , 𝜃𝑝) in
ℝ𝑝 and define a functional cost 𝜃 ↦ 𝑄𝑡(𝜃) depending on 𝜃, that takes the following form:

𝑄𝑡(𝜃) = min
𝜏∈𝑆𝑡

(
𝑀−1
∑
𝑖=0

{𝒞 (𝑦(𝜏𝑖+1)∶𝜏𝑖+1) + 𝛽} +
𝑡

∑
𝑗=𝜏𝑀+1

Ω(𝜃, 𝑦𝑗) + 𝛽) .

As explained in (Maidstone et al. 2017), we can compute the function 𝑄𝑡+1(⋅) based only on the
knowledge of 𝑄𝑡(⋅) for each integer 𝑡 from 0 to 𝑛 − 1. We have:

𝑄𝑡+1(𝜃) = min{𝑄𝑡(𝜃), �̂�𝑡 + 𝛽} + Ω(𝜃, 𝑦𝑡+1) , (3)

for all 𝜃 ∈ ℝ𝑝, with �̂�𝑡 = min𝜃 𝑄𝑡(𝜃) (𝑡 ≥ 1) and the initialization 𝑄0(𝜃) = 𝛽, �̂�0 = 0 so that
𝑄1(𝜃) = Ω(𝜃, 𝑦1) + 𝛽. By looking closely at this relation, we see that each function 𝑄𝑡 is a piece-wise
continuous function consisting of at most 𝑡 different functions on ℝ𝑝, denoted 𝑞𝑖𝑡 :

𝑄𝑡(𝜃) = min
𝑖∈{1,…,𝑡}

{𝑞𝑖𝑡(𝜃)} ,

where the 𝑞𝑖𝑡 functions are given by explicit formulas:

5

𝑞𝑖𝑡(𝜃) = �̂�𝑖−1 + 𝛽 +
𝑡

∑
𝑗=𝑖

Ω(𝜃, 𝑦𝑗) , 𝜃 ∈ ℝ𝑝 , 𝑖 = 1, … , 𝑡.

and

�̂�𝑖−1 = min
𝜃∈ℝ𝑝

𝑄𝑖−1(𝜃) = min
𝑗∈{1,…,𝑖−1}

{min
𝜃∈ℝ𝑝

𝑞𝑗𝑖−1(𝜃)} . (4)

It is important to notice that each 𝑞𝑖𝑡 function is associated with the last change point 𝑖 − 1 and the
last segment is given by indices from 𝑖 to 𝑡. Consequently, the last change point at step 𝑡 in 𝑦1∶𝑡 is
denoted as ̂𝜏𝑡 (̂𝜏𝑡 ≤ 𝑡 − 1) and is given by

̂𝜏𝑡 = 𝐴𝑟𝑔min
𝑖∈{1,…,𝑡}

{min
𝜃∈ℝ𝑝

𝑞𝑖𝑡(𝜃)} − 1.

Backtracking. Knowing the values of ̂𝜏𝑡 for all 𝑡 = 1, … , 𝑛, we can always restore the optimal
segmentation at time 𝑛 for 𝑦1∶𝑛. This procedure is called backtracking. The vector 𝑐𝑝(𝑛) of ordered
change points in the optimal segmentation of 𝑦1∶𝑛 is determined recursively by the relation 𝑐𝑝(𝑛) =
(𝑐𝑝(̂𝜏𝑛), ̂𝜏𝑛) with stopping rule 𝑐𝑝(0) = ∅.

Parameter space description. Applying functional pruning requires a precise analysis of the recursion
(3) that depends on the property of the cost function Ω. In what follows we consider three choices
based on a Gaussian, Poisson, and negative binomial distribution for data distribution. The exact
formulas of these cost functions are given in Section 5.1.

We denote the set of parameter values for which the function 𝑞𝑖𝑡(⋅) is optimal as:

𝑍 𝑖
𝑡 = {𝜃 ∈ ℝ𝑝|𝑄𝑡(𝜃) = 𝑞𝑖𝑡(𝜃)} , 𝑖 = 1, … , 𝑡.

also called the living zone. The key idea behind functional pruning is that the 𝑍 𝑖
𝑡 are nested (𝑍 𝑖

𝑡+1 ⊂ 𝑍 𝑖
𝑡)

thus as soon as we can prove the emptiness of one set 𝑍 𝑖
𝑡 , we delete its associated 𝑞𝑖𝑡 function and

do not have to consider its minimum anymore at any further iteration (proof in Section 1.3). In
dimension 𝑝 = 1 this is reasonably easy. In this case, the sets 𝑍 𝑖

𝑡 (𝑖 = 1, … , 𝑡) are unions of intervals
and an efficient functional pruning rule is possible by updating a list of these intervals for 𝑄𝑡. This
approach is implemented in FPOP (Maidstone et al. 2017).

In dimension 𝑝 ≥ 2 it is not so easy anymore to keep track of the emptiness of the sets 𝑍 𝑖
𝑡 . We illustrate

the dynamics of the 𝑍 𝑖
𝑡 sets in Figure 1 in the bivariate Gaussian case. Each color is associated with a

set 𝑍 𝑖
𝑡 (corresponding to a possible change at 𝑖 − 1) for 𝑡 equal 1 to 5. This plot shows in particular

that sets 𝑍 𝑖
𝑡 can be non-convex.

1.3 Geometric Formulation of Functional Pruning

To build an efficient pruning strategy for dimension 𝑝 ≥ 2 we need to test the emptiness of the sets
𝑍 𝑖
𝑡 at each iteration. Note that to get 𝑍 𝑖

𝑡 we need to compare the functional cost 𝑞𝑖𝑡 with any other
functional cost 𝑞𝑗𝑡 , 𝑗 = 1, … , 𝑡, 𝑗 ≠ 𝑖. This leads to the definition of the following sets.

Definition 1.1. We define 𝑆-type set 𝑆 𝑖𝑗 using the function Ω as

𝑆 𝑖𝑗 = {𝜃 ∈ ℝ𝑝 |
𝑗−1
∑
𝑢=𝑖

Ω(𝜃, 𝑦𝑢) ≤ �̂�𝑗−1 − �̂�𝑖−1} , when 𝑖 < 𝑗

6

Figure 1: The sets 𝑍 𝑖
𝑡 over time for the bivariate independent Gaussian model on time series without

change 𝑦 = ((0.29, 1.93), (1.86, −0.02), (0.9, 2.51), (−1.26, 0.91), (1.22, 1.11)). From left to right we
represent at time 𝑡 = 1, 2, 3, 4, and 5 the parameter space (𝜃1, 𝜃2). Each 𝑍 𝑖

𝑡 is represented by a color.
The change 1 associated with quadratics 2 is pruned at 𝑡 = 3. Notice that each time sequence of 𝑍 𝑖

𝑡
with 𝑖 fixed is a nested sequence of sets.

and 𝑆 𝑖𝑖 = ℝ𝑝. We denote the set of all possible S-type sets as S.

To ease some of our calculations, we now introduce some additional notations. For 𝜃 = (𝜃1, … , 𝜃𝑝) in
ℝ𝑝, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 we define 𝑝 univariate functions 𝜃𝑘 ↦ 𝑠𝑘𝑖𝑗(𝜃𝑘) associated to the 𝑘-th time series as

𝑠𝑘𝑖𝑗(𝜃𝑘) =
𝑗−1
∑
𝑢=𝑖

𝜔(𝜃𝑘, 𝑦𝑘𝑢), 𝑘 = 1, … , 𝑝 . (5)

We introduce a constant Δ𝑖𝑗 and a function 𝜃 ↦ 𝑠𝑖𝑗(𝜃):

⎧

⎨
⎩

Δ𝑖𝑗 = �̂�𝑗−1 − �̂�𝑖−1 ,

𝑠𝑖𝑗(𝜃) =
𝑝
∑
𝑘=1

𝑠𝑘𝑖𝑗(𝜃𝑘) − Δ𝑖𝑗 ,
(6)

where �̂�𝑖−1 and �̂�𝑗−1 are defined as in (4). The sets 𝑆 𝑖𝑗 for 𝑖 < 𝑗 can thus be written as

𝑆 𝑖𝑗 = 𝑠−1𝑖𝑗 (−∞, 0] . (7)

In Figure 2 we present the level curves for three different parametric models given by 𝑠−1𝑖𝑗 ({𝑤}) with
𝑤 a real number. Each of these curves encloses an S-type set, which, according to the definition of
the function 𝜔, is convex.

At time 𝑡 = 1, … , 𝑛 we define the following sets associated to the last change point index 𝑖 − 1:

-past set 𝒫 𝑖

𝒫 𝑖 = {𝑆𝑢𝑖 , 𝑢 = 1, … , 𝑖 − 1} .

-future setℱ 𝑖(𝑡)
ℱ 𝑖(𝑡) = {𝑆 𝑖𝑣, 𝑣 = 𝑖, … , 𝑡} .

We denote the cardinal of a set 𝒜 as |𝒜 |. Using these two sets of sets, the 𝑍 𝑖
𝑡 have the following

description.

Proposition 1.1. At iteration 𝑡, the living zones 𝑍 𝑖
𝑡 (𝑖 = 1, … , 𝑡) are defined by the functional cost 𝑄𝑡(⋅),

with each of them being formed as the intersection of sets in ℱ 𝑖(𝑡) excluding the union of sets in 𝒫 𝑖.

7

Figure 2: Three examples of the level curves of a function 𝑠𝑖𝑗 for bivariate time series {𝑦1, 𝑦2}. We use
the following simulations for univariate time series : (a) 𝑦1 ∼ 𝒩 (0, 1), 𝑦2 ∼ 𝒩 (0, 1), (b) 𝑦1 ∼ 𝒫 (1),
𝑦2 ∼ 𝒫 (3), (c) 𝑦1 ∼ 𝒩ℬ(0.5, 1), 𝑦2 ∼ 𝒩ℬ(0.8, 1).

𝑍 𝑖
𝑡 = (⋂

𝑆∈ℱ 𝑖(𝑡)
𝑆) ∖ (∪𝑆∈𝒫 𝑖𝑆) , 𝑖 = 1, … , 𝑡. (8)

Proof. Based on the definition of the set 𝑍 𝑖
𝑡 , the proof is straightforward. Parameter value 𝜃 is in 𝑍 𝑖

𝑡
if and only if 𝑞𝑖𝑡(𝜃) ≤ 𝑞𝑢𝑡 (𝜃) for all 𝑢 ≠ 𝑖; these inequalities define the past set (when 𝑢 < 𝑖) and the
future set (when 𝑢 ≥ 𝑖).

Proposition 1.1 states that regardless of the value of i, the living zone 𝑍 𝑖
𝑡 is formed through intersection

and elimination operations on 𝑡 S-type sets. Notably, one of these sets, 𝑆 𝑖𝑖 , always represents the
entire space ℝ𝑝.

Corollary 1.1. The sequence 𝜁 𝑖 = (𝑍 𝑖
𝑡)𝑡≥𝑖 is a nested sequence of sets.

Indeed, 𝑍 𝑖
𝑡+1 is equal to 𝑍 𝑖

𝑡 with an additional intersection in the future set. Based on Corollary 1.1,
as soon as we prove that the set 𝑍 𝑖

𝑡 , is empty, we delete its associated 𝑞𝑖𝑡 function and, consequently,
we can prune the change point 𝑖 − 1. In this context, functional and inequality-based pruning have a
simple geometric interpretation.

Functional pruning geometry. The position 𝑖 − 1 is pruned at step 𝑡, in 𝑄𝑡(⋅), if the intersection set of
⋂𝑆∈ℱ 𝑖(𝑡) 𝑆 is covered by the union set ∪𝑆∈𝒫 𝑖𝑆.

Inequality-based pruning geometry. The inequality-based pruning of PELT is equivalent to the
geometric rule: position 𝑖 − 1 is pruned at step 𝑡 if the set 𝑆 𝑖𝑡 is empty. In that case, the intersection set
⋂𝑆∈ℱ 𝑖(𝑡) 𝑆 is empty, and therefore 𝑍 𝑖

𝑡 is also empty using (8). This shows that if a change is pruned
using inequality-based pruning it is also pruned using functional pruning. For the dimension 𝑝 = 1
this claim was theoretically proved in (Maidstone et al. 2017).

8

According to Proposition 1.1, beginning with 𝑍 𝑖
𝑖 = ℝ𝑝, the set 𝑍 𝑖

𝑡 is derived by iteratively applying
two types of operations: intersection with an S-type set 𝑆 from ℱ 𝑖(𝑡) or subtraction of an S-type set
𝑆 from 𝒫 𝑖. The construction of set 𝑍 𝑖

𝑡 using Proposition 1.1 is illustrated in Figure 3 for a bivariate
independent Gaussian case: we have the intersection of three S-type sets and the subtraction of three
S-type sets. This simple example highlights that the set 𝑍 𝑖

𝑡 is typically non-convex, posing challenge
in studying its emptiness.

Figure 3: Examples of building a living zone 𝑍 𝑖
𝑡 with |𝒫 𝑖| = |ℱ 𝑖(𝑡)| = 3 for the Gaussian case in 2-D

(𝜇 = 0, 𝜎 = 1). The green disks are S-type sets of the past set 𝒫 𝑖. The blue disks are S-type sets of
the future set ℱ 𝑖(𝑡). The shaded area is the set 𝑍 𝑖

𝑡 .

2 Geometric Functional Pruning Optimal Partitioning

2.1 General Principle of GeomFPOP

Rather than considering an exact representation of the 𝑍 𝑖
𝑡 , our idea is to consider a hopefully slightly

larger set that is easier to update. To be specific, for each 𝑍 𝑖
𝑡 we introduce �̃� 𝑖

𝑡 , called testing set,
such that 𝑍 𝑖

𝑡 ⊂ �̃� 𝑖
𝑡 . If at time 𝑡 �̃� 𝑖

𝑡 is empty thus is 𝑍 𝑖
𝑡 and thus change 𝑖 − 1 can be pruned. From

Proposition 1.1 we have that starting from 𝑍 𝑖
𝑖 = ℝ𝑝 the set 𝑍 𝑖

𝑡 is obtained by successively applying
two types of operations: intersection with an S-type set 𝑆 (𝑍 ⋂ 𝑆) or subtraction of an S-type set 𝑆
(𝑍 ∖ 𝑆). Similarly, starting from �̃� 𝑖

𝑖 = ℝ𝑝 we obtain �̃� 𝑖
𝑡 by successively applying approximation of

these intersection and subtraction operations. Intuitively, the complexity of the resulting algorithm
is a combination of the efficiency of the pruning and the easiness of updating the testing set.

A Generic Formulation of GeomFPOP. In what follows we will generically describe GeomFPOP, that
is, without specifying the precise structure of the testing set �̃� 𝑖

𝑡 . We call Z̃ the set of all possible �̃� 𝑖
𝑡

and assume the existence of two operators ⋂�̃� and ∖�̃�. We have the following assumptions for these
operators.

Definition 2.1. The two operators ⋂�̃� and ∖�̃� are such that:

1. the left input is a �̃�-type set (that is an element of Z̃);
2. the right input is a 𝑆-type set;
3. the output is a �̃�-type set;
4. �̃� ⋂ 𝑆 ⊂ �̃� ⋂�̃� 𝑆 and �̃� ∖ 𝑆 ⊂ �̃� ∖�̃� 𝑆.

9

We give a proper description of two types of testing sets and their approximation operators in
Section 3.

At each iteration 𝑡 GeomFPOP will construct �̃� 𝑖
𝑡 (with 𝑖 < 𝑡) from �̃� 𝑖

𝑡−1, 𝒫 𝑖 and ℱ 𝑖(𝑡) iteratively using
the two operators ⋂�̃� and ∖�̃�. To be specific, we define 𝑆𝐹𝑗 the j-th element of ℱ 𝑖(𝑡) and 𝑆𝑗𝑃 the j-th
element of 𝒫 𝑖, we use the following iterations:

{
𝐴0 = �̃� 𝑖

𝑡 , 𝐴𝑗 = 𝐴𝑗−1 ⋂
�̃�

𝑆𝐹𝑗 , 𝑗 = 1, … , |ℱ 𝑖(𝑡)| ,

𝐵0 = 𝐴|ℱ 𝑖(𝑡)| , 𝐵𝑗 = 𝐵𝑗−1 ∖�̃� 𝑆𝑗𝑃 , 𝑗 = 1, … , |𝒫 𝑖| ,

and define �̃� 𝑖
𝑡 = 𝐵|𝒫 𝑖|. Using the fourth property of Definition 2.1 and Proposition 1.1, we get that at

any time of the algorithm �̃� 𝑖
𝑡 contains 𝑍 𝑖

𝑡 .

The pseudo-code of this procedure is described in Algorithm 1. The select(𝒜) step in Algorithm 1,
where 𝒜 ⊂ S, returns a subset of 𝒜 in S. By default, select(𝒜) ∶= 𝒜.

Algorithm 1 Geometric update rule of �̃� 𝑖
𝑡

1: procedure updateZone(�̃� 𝑖
𝑡−1, 𝒫 𝑖, ℱ 𝑖(𝑡), 𝑖 < 𝑡)

2: �̃� 𝑖
𝑡 ← �̃� 𝑖

𝑡−1
3: for 𝑆 ∈ select(ℱ 𝑖(𝑡 − 1)) do
4: �̃� 𝑖

𝑡 ← �̃� 𝑖
𝑡 ⋂�̃� 𝑆

5: end for
6: for 𝑆 ∈ select(𝒫 𝑖) do
7: �̃� 𝑖

𝑡 ← �̃� 𝑖
𝑡 ∖�̃� 𝑆

8: end forreturn �̃� 𝑖
𝑡

9: end procedure

We denote the set of candidate change points at time 𝑡 as 𝜏𝑡. Note that for any (𝑖 − 1) ∈ 𝜏𝑡 the
sum of |𝒫 𝑖| and |ℱ 𝑖(𝑡)| is |𝜏𝑡|. With the default select procedure we do 𝒪(𝑝|𝜏𝑡|) operations in the
updateZone procedure. By limiting the number of elements returned by select we can reduce the
complexity of the updateZone procedure.

Remark. For example, if the operator 𝒜 ↦ select(𝒜), regardless of |𝒜 |, always returns a subset of
constant size, then the overall complexity of GeomFPOP is at worst ∑𝑛

𝑡=1 𝒪(𝑝|𝜏𝑡|).

Using this updateZone procedure we can now informally describe the GeomFPOP algorithm. At
each iteration the algorithm will

1. find the minimum value for 𝑄𝑡, 𝑚𝑡 and the best position for last change point ̂𝜏𝑡 (note that this
step is standard: as in the PELT algorithm we need to minimize the cost of the last segment
defined in equation (1));

2. compute all sets �̃� 𝑖
𝑡 using �̃� 𝑖

𝑡−1, 𝒫 𝑖, and ℱ 𝑖(𝑡) with the updateZone procedure;
3. remove changes such that �̃� 𝑖

𝑡 is empty.

To simplify the pseudo-code of GeomFPOP, we also define the following operators:

1. bestCost&Tau(𝑡) operator returns two values: the minimum value of 𝑄𝑡, 𝑚𝑡, and the best
position for last change point ̂𝜏𝑡 at time 𝑡 (see Section 1.2);

2. getPastFutureSets(𝑖, 𝑡) operator returns a pair of sets (𝒫 𝑖, ℱ 𝑖(𝑡)) for change point candidate
𝑖 − 1 at time 𝑡 ;

10

3. backtracking(̂𝜏 , 𝑛) operator returns the optimal segmentation for 𝑦1∶𝑛.

The pseudo-code of GeomFPOP is presented in Algorithm 2.

Algorithm 2 GeomFPOP algorithm
1: procedure GeomFPOP(𝑦, Ω(⋅, ⋅), 𝛽)
2: �̂�0 ← 0, 𝑄0(𝜃) ← 𝛽 , 𝜏0 ← ∅, {�̃� 𝑖

𝑖 }𝑖∈{1,…,𝑛} ← ℝ𝑝
3: for 𝑡 = 1, … , 𝑛 do
4: 𝑄𝑡(𝜃) ← min{𝑄𝑡−1(𝜃), �̂�𝑡−1 + 𝛽} + Ω(𝜃, 𝑦𝑡)
5: (�̂�𝑡, ̂𝜏𝑡) ← bestCost&Tau(𝑡)
6: for 𝑖 − 1 ∈ 𝜏𝑡−1 do
7: (𝒫 𝑖, ℱ 𝑖(𝑡)) ← getPastFutureSets(𝑖, 𝑡)
8: �̃� 𝑖

𝑡 ← updateZone(�̃� 𝑖
𝑡−1, 𝒫 𝑖, ℱ 𝑖(𝑡), 𝑖, 𝑡)

9: if �̃� 𝑖
𝑡 = ∅ then

10: 𝜏𝑡−1 ← 𝜏𝑡−1\{𝑖 − 1}
11: end if
12: end for
13: 𝜏𝑡 ← (𝜏𝑡−1, 𝑡 − 1)
14: end forreturn 𝑐𝑝(𝑛) ← backtracking(̂𝜏 = (̂𝜏1, … , ̂𝜏𝑛), 𝑛)
15: end procedure

Remark. Whatever the number of elements returned by the select operator for computing �̃� 𝑖
𝑡 , we

can guarantee the exactness of the GeomFPOP algorithm, since the approximate living zone (the
testing set) includes the living zone (8), as we consider less intersections and set subtractions.

3 Approximation Operators ⋂�̃� and ∖�̃�

The choice of the geometric structure and the way it is constructed directly affects the computational
cost of the algorithm. We consider two types of testing set �̃� ∈ Z̃, a S-type set ̃𝑆 ∈ S (see Definition 1.1)
and a hyperrectangle �̃� ∈ R defined below.

Definition 3.1. Given two vectors in ℝ𝑝, ̃𝑙 and ̃𝑟 we define the set �̃�, called hyperrectangle, as:

�̃� = [̃𝑙1, ̃𝑟1] × ⋯ × [̃𝑙𝑝, ̃𝑟𝑝] .

We denote the set of all possible sets �̃� as R.

To update the testing sets we need to give a strict definition of the operators ⋂�̃� and ∖�̃� for each
type of testing set. To facilitate the following discussion, we rename them. For the first type of
geometric structure, we rename the testing set �̃� as ̃𝑆, the operators ⋂�̃� and ∖�̃� as ⋂𝑆 and ∖𝑆 and
�̃�-type approximation as S-type approximation. And, likewise, we rename the testing set �̃� as �̃�,
the operators ⋂�̃� and ∖�̃� as ⋂𝑅 and ∖𝑅 and �̃�-type approximation as R-type approximation for the
second type of geometric structure.

3.1 S-type Approximation

With this approach, our goal is to keep track of the fact that at time 𝑡 = 1, … , 𝑛 there is a pair of
changes (𝑢1, 𝑢2), with 𝑢1 < 𝑖 < 𝑢2 ≤ 𝑡 such that 𝑆 𝑖𝑢2 ⊂ 𝑆𝑢1𝑖 or there is a pair of changes (𝑣1, 𝑣2), with
𝑖 < 𝑣1 < 𝑣2 ≤ 𝑡 such that 𝑆 𝑖𝑣1 ⋂𝑆 𝑖𝑣2 is empty. If at time 𝑡 at least one of these conditions is met, we can
guarantee that the set ̃𝑆 is empty, otherwise, we propose to keep as the result of approximation the

11

last future S-type set 𝑆 𝑖𝑡 , because it always includes the set 𝑍 𝑖
𝑡 . This allows us to quickly check and

prove (if ̃𝑆 = ∅) the emptiness of set 𝑍 𝑖
𝑡 .

We consider two generic S-type sets, 𝑆 and ̃𝑆 from S, described as in Definition 1.1 by the functions 𝑠
and ̃𝑠:

𝑠(𝜃) =
𝑝
∑
𝑘=1

𝑠𝑘(𝜃𝑘) − Δ , ̃𝑠(𝜃) =
𝑝
∑
𝑘=1

̃𝑠𝑘(𝜃𝑘) − Δ̃ .

Definition 3.2. For all 𝑆 and ̃𝑆 in S we define the operators ⋂𝑆 and ∖𝑆 as:

̃𝑆 ⋂
𝑆

𝑆 = {
∅ , if ̃𝑆 ⋂ 𝑆 = ∅ ,
̃𝑆 , otherwise .

̃𝑆 ∖𝑆 𝑆 = {
∅ , if ̃𝑆 ⊂ 𝑆 ,
̃𝑆 , otherwise .

As a consequence, we only need an easy way to detect any of these two geometric configurations:
̃𝑆 ⋂ 𝑆 and ̃𝑆 ⊂ 𝑆.

In the Gaussian case, the S-type sets are 𝑝-balls and an easy solution exists based on comparing radii
(see Section 5.2 for details). In the case of other models (as Poisson or negative binomial), intersection
and inclusion tests can be performed based on a solution using separative hyperplanes and iterative
algorithms for convex problems (see Section 5.3). We propose another type of testing set solving all
types of models with the same method.

3.2 R-type Approximation

Here, we approximate the sets 𝑍 𝑖
𝑡 by hyperrectangles �̃�𝑖𝑡 ∈ R. A key insight of this approximation is

that given a hyperrectangle 𝑅 and an S-type set 𝑆 we can efficiently (in 𝒪(𝑝) using Proposition 3.2)
recover the best hyperrectangle approximation of 𝑅∪𝑆 and 𝑅∖𝑆. Formally we define these operators
as follows.

Definition 3.3. For all 𝑅, �̃� ∈ R and 𝑆 ∈ S we define the operators ⋂𝑅 and ∖𝑅 as:

𝑅⋂
𝑅
𝑆 = ⋂

{�̃�|𝑅⋂ 𝑆⊂R}
�̃� ,

𝑅 ∖𝑅 𝑆 = ⋂
{�̃�|𝑅∖𝑆⊂R}

�̃� .

We now explain how we compute these two operators. First, we note that they can be recovered by
solving 2𝑝 one-dimensional optimization problems.

Proposition 3.1. The 𝑘-th minimum coordinates ̃𝑙𝑘 and maximum coordinates ̃𝑟𝑘 of �̃� = 𝑅⋂𝑅 𝑆 (resp.
�̃� = 𝑅 ∖𝑅 𝑆) is obtained as

̃𝑙𝑘 or ̃𝑟𝑘 =
⎧⎪
⎨⎪
⎩

min
𝜃𝑘∈ℝ

or max
𝜃𝑘∈ℝ

𝜃𝑘 ,

subject to 𝜀𝑠(𝜃) ≤ 0 ,
𝑙𝑗 ≤ 𝜃𝑗 ≤ 𝑟𝑗 , 𝑗 = 1, … , 𝑝 ,

(9)

with 𝜀 = 1 (resp. 𝜀 = −1).

12

To solve the previous problems (𝜀 = 1 or −1), we define the following characteristic points.

Definition 3.4. Let 𝑆 ∈ S, described by function 𝑠(𝜃) = ∑𝑝
𝑘=1 𝑠

𝑘(𝜃𝑘) − Δ from the family of functions
(6), with 𝜃 ∈ ℝ𝑝. We define the minimal point c ∈ ℝ𝑝 of 𝑆 as:

c = {c𝑘}𝑘=1,…,𝑝 , with c𝑘 = 𝐴𝑟𝑔min
𝜃𝑘∈ℝ

{𝑠𝑘(𝜃𝑘)} . (10)

Moreover, with 𝑅 ∈ R defined through vectors 𝑙 , 𝑟 ∈ ℝ𝑝, we define two points of 𝑅, the closest point
m ∈ ℝ𝑝 and the farthest point M ∈ ℝ𝑝 relative to 𝑆 as

m = {m𝑘}𝑘=1,…,𝑝 , with m𝑘 = 𝐴𝑟𝑔min
𝑙𝑘≤𝜃𝑘≤𝑟𝑘

{𝑠𝑘(𝜃𝑘)} ,

M = {M𝑘}𝑘=1,…,𝑝 , with M𝑘 = 𝐴𝑟𝑔max
𝑙𝑘≤𝜃𝑘≤𝑟𝑘

{𝑠𝑘(𝜃𝑘)} .

Remark. In the Gaussian case, 𝑆 is a ball in ℝ𝑝 and

• c is the center of the ball;
• m is the closest point to c inside 𝑅;
• M is the farthest point to c in 𝑅.

Figure 4: Three examples of minimal point c, closest point m and farthest point M for bivariate
Gaussian case: (a) 𝑅 ⊂ 𝑆; (b) 𝑅⋂𝑆 ≠ ∅; (c) 𝑅⋂𝑆 = ∅.

Proposition 3.2. Let �̃� = 𝑅⋂𝑅 𝑆 (resp. 𝑅 ∖𝑅 𝑆), with 𝑅 ∈ R and 𝑆 ∈ S. We compute the boundaries
(̃𝑙 , ̃𝑟) of �̃� using the following rule:

1. We define the point ̃𝜃 ∈ ℝ𝑝 as the closest pointm (resp. farthestM). For all 𝑘 = 1, … 𝑝 we find the
roots 𝜃𝑘1 and 𝜃𝑘2 of the one-variable (𝜃𝑘) equation

𝑠𝑘(𝜃𝑘) +∑
𝑗≠𝑘

𝑠𝑗(̃𝜃 𝑗) − Δ = 0 .

If the roots are real-valued we consider that 𝜃𝑘1 ≤ 𝜃𝑘2 , otherwise we write [𝜃𝑘1 , 𝜃𝑘2] = ∅.

2. We compute the boundary values ̃𝑙𝑘 and ̃𝑟𝑘 of �̃� as:

• For 𝑅⋂𝑅 𝑆 (𝑘 = 1, … , 𝑝):

13

[̃𝑙𝑘, ̃𝑟𝑘] = [𝜃𝑘1 , 𝜃𝑘2]⋂[𝑙𝑘, 𝑟𝑘] . (11)

• For 𝑅 ∖𝑅 𝑆 (𝑘 = 1, … , 𝑝):

[̃𝑙𝑘, ̃𝑟𝑘] = {
[𝑙𝑘, 𝑟𝑘] ∖ [𝜃𝑘1 , 𝜃𝑘2] , if [𝜃𝑘1 , 𝜃𝑘2] ⊄ [𝑙𝑘, 𝑟𝑘] ,

[𝑙𝑘, 𝑟𝑘] , otherwise .

If there is a dimension 𝑘 for which [̃𝑙𝑘, ̃𝑟𝑘] = ∅, then the set �̃� is empty.

The proof of Proposition 3.2 is presented in Section 5.4.

As a partial conclusion to this theoretical study, those ideas could be extended to some other models
with missing values or dependencies between dimensions (e.g. piece-wise constant regression).
However, it would require introducing new approximation operators of potential high complexity.

4 Simulation Study of GeomFPOP

In this section, we study the efficiency of GeomFPOP using simulations of multivariate independent
time series. For this, we implemented GeomFPOP (with S and R types) and PELT for the Multivari-
ate Independent Gaussian Model in the R-package ‘GeomFPOP’ https://github.com/lpishchagina/
GeomFPOP written in R/C++. By default, the value of penalty 𝛽 for each simulation was defined
by the Schwarz Information Criterion proposed in (Yao 1988) as 𝛽 = 2𝑝𝜎2 log 𝑛 with 𝜎 = 1 known.
As long as the per-dimension variance is known (or appropriately estimated) we can make this
assumption (𝜎 = 1 known) without loss of generality by rescaling the data by the standard deviation.

Overview of our simulations. First, for 2 ≤ 𝑝 ≤ 10 we generated 𝑝-variate independent time series
(multivariate independent Gaussian model with fixed variance) with 𝑛 = 104 data points and number
of segments: 1, 5, 10, 50 and 100. The segment-specific parameter (mean) was set to 1 for even
segments, and 0 for odd segments. As a quality control measure, we verified that PELT andGeomFPOP
produced identical outputs on these simulated profiles. Second, we studied cases where the PELT
approach is not efficient, that is when the data has no or few changes relative to 𝑛. Indeed, it was
shown in (Killick, Fearnhead, and Eckley 2012) and (Maidstone et al. 2017) that the run time of
PELT is close to 𝒪(𝑛2) in such cases. So we considered simulations of multivariate time series
without change (only one segment). By these simulations we evaluated the pruning efficiency of
GeomFPOP (using S and R types) for dimension 2 ≤ 𝑝 ≤ 10 (see Figure 5 in Section 4.1). For small
dimensions we also evaluated the run time of GeomFPOP and PELT and compare them (see Figure 6
in Section 4.2). In addition, we considered another approximation of the 𝑍 𝑖

𝑡 where we applied our
⋂𝑅 and ∖𝑅 operators only for a randomly selected subset of the past and future balls. In practice,
this strategy turned out to be faster computationally than the full/original GeomFPOP and PELT
(see Figure 7 in Section 4.3). For this strategy we also generated time series of a fixed size (106 data
points) and varying number of segments and evaluated how the run time vary with the number of
segments for small dimensions (2 ≤ 𝑝 ≤ 4). Our empirical results confirmed that the GeomFPOP
(R-type: random/random) approach is computationally comparable to PELT when the number of
changes is large (see Figure 9 in Section 4.5).

4.1 The Number of Change Point Candidates stored over Time

We evaluate the functional pruning efficiency of the GeomFPOP method using 𝑝-variate independent
Gaussian noise of length 𝑛 = 104 data points. For such series, PELT typically does not pruned (e.g. for
𝑡 = 104, 𝑝 = 2 it stores almost always 𝑡 candidates).

14

https://github.com/lpishchagina/GeomFPOP
https://github.com/lpishchagina/GeomFPOP

We report in Figure 5 the percentage of candidates that are kept by GeomFPOP as a function of 𝑛, 𝑝
and the type of pruning (R or S). Regardless of the type of approximation and contrary to PELT, we
observe that there is some pruning. However when increasing the dimension 𝑝, the quality of the
pruning decreases.

Comparing the left plot of Figure 5 with the right plot we see that for dimensions 𝑝 = 2 to 𝑝 = 5
R-type prunes more than the S-type, while for larger dimensions the S-type prunes more than the
R-type. For example, for 𝑝 = 2 at time 𝑡 = 104 by GeomFPOP (R-type) the number of candidates
stored over 𝑡 does not exceed 1% versus 3% by GeomFPOP (S-type). This intuitively makes sense.
One the one hand, the R-type approximation of a sphere deteriorates as the dimension increases. On
the other hand with R-type approximation every new approximation is included in the previous one.
For small dimensions this memory effect outweighs the roughness of the approximation.

Figure 5: Percentage of candidate change points stored over time by GeomFPOP with R (left) or S
(right) type pruning for dimension 𝑝 = 2,… , 10. Averaged over 100 data sets.

Based on these results we expect that R-type pruning GeomFPOP will be more efficient than S-type
pruning for small dimensions.

4.2 Empirical Time Complexity of GeomFPOP

We studied the run time of GeomFPOP (S and R-type) and compared it to PELT for small dimensions.
We simulated data generated by a 𝑝-variate i.i.d. Gaussian noise and saved their run times with a three
minutes limit. The results are presented in Figure 6. We observe that GeomFPOP is faster than PELT
only for 𝑝 = 2. For 𝑝 = 3 run times are comparable and for 𝑝 = 4 GeomFPOP is slower. This is not in
line with the fact that GeomFPOP prunes more than PELT. However, as explained in Section 2.1, the
computational complexity of GeomFPOP and PELT is affected by both the efficiency of pruning and
the number of comparisons conducted at each step. For PELT at time 𝑡, all candidates are compared
to the last change, resulting in a complexity of order 𝒪(𝑝|𝜏𝑃𝐸𝐿𝑇𝑡 |). On the other hand, GeomFPOP
compares all candidates to each other (refer to Algorithm 1 and the remark from Section 2.1), leading
to a complexity of order 𝒪(𝑝|𝜏𝐺𝑒𝑜𝑚𝐹𝑃𝑂𝑃𝑡 |2). In essence, the complexity of GeomFPOP is governed
by the square of the number of candidates. Therefore, GeomFPOP is expected to be more efficient
than PELT only if its square number of candidates is smaller than the number of candidates for
PELT. Based on the information presented in} Figure 6, we argue that this condition holds true only
for dimensions 𝑝 = 2 and 3. Indeed, analysis of the number of comparisons between PELT and
GeomFPOP (see Section 5.6) supports this claim, revealing that GeomFPOP (S-type) outperforms

15

PELT only when 𝑝 ≤ 2 and GeomFPOP (R-type) outperforms PELT only when 𝑝 ≤ 3 (see Figure 12
in Section 5.6). This leads us to consider a randomized version of GeomFPOP.

Figure 6: Run time of GeomFPOP (S and R types) and PELT using multivariate time series without
change points. The maximum run time of the algorithms is 3 minutes. Averaged over 100 data sets.

4.3 Empirical Time Complexity of a Randomized GeomFPOP

R-type GeomFPOP is designed in such a way that at each iteration we need to consider all past and
future spheres of change 𝑖. In practice, it is often sufficient to consider just a few of them to get an
empty set. Having this in mind, we propose a further approximation of the 𝑍 𝑖

𝑡 where we apply our
⋂𝑅 and ∖𝑅 operators only for a randomly selected subset of the past and future sets. In detail, we
propose to redefine the output of the select() function in Algorithm 1 for any sets 𝒫 𝑖 and ℱ 𝑖(𝑡) as:

• select(𝒫 𝑖) returns one random set from 𝒫 𝑖.
• select(ℱ 𝑖(𝑡)) returns the last set 𝑆 𝑖𝑡 and one random set from ℱ 𝑖(𝑡).

Thus, we consider the following geometric update rule:

• (random/random) At time 𝑡 we update hyperrectangle:
1. by only two intersection operations: one with the last S-type set 𝑆 𝑖𝑡 from ℱ 𝑖(𝑡), and one

with a random S-type set from ℱ 𝑖(𝑡);
2. by only one exclusion operation with a random S-type set from 𝒫 𝑖.

In this approach, at time 𝑡 we need no more than three operations to update the testing set �̃� 𝑖
𝑡 for

each (𝑖 − 1) ∈ 𝜏𝑡. As can be seen in Figure Figure 11 of Section 5.5, by making less comparisons, we
prune less change points than in the general GeomFPOP (R-type) case, but still more than PELT.
It is important to note that in this randomization, we compare each change point candidate with
only two other change point candidates (rather than all in the general case of GeomFPOP (R-type)).
Therefore, informally our complexity at time step 𝑡 is only 𝒪(𝑝|𝜏𝐺𝑒𝑜𝑚𝐹𝑃𝑂𝑃(random/random)𝑡 |). According
to the remark from Section 2.1 and the discussion in Section 4.2, even with large values of 𝑝, the
overall complexity of GeomFPOP should not be worse than that of PELT. We investigated other
randomized strategies (see Section 5.5) but this simple one was sufficient to significantly improve
run times. The run time of our optimization approach and PELT in dimension (𝑝 = 2,… , 10, 100) are
presented in Figure 7. As in Section 4.2, run times were limited to three minutes and were recorded
for simulations of length ranging 𝑛 from 210 to 223 data points (𝑝-variate i.i.d. Gaussian noise).

Although the (random/random) approach reduces the quality of pruning (see Section 5.5), it gives a
significant gain in run time compared to PELT in small dimensions. To be specific, with a run time of

16

five minutes GeomFPOP, on average, processes a time series with a length of about 8 × 106, 106 and
2, 5 × 105 data points in the dimensions 𝑝 = 2, 3 and 4, respectively. At the same time, PELT manages
to process time series with a length of at most 6, 5 × 104 data points in these dimensions.

Figure 7: Run time of the (random/random) approach of GeomFPOP (R-type) and PELT using p-variate
time series without change points (𝑝 = 2,… , 10, 100). The maximum run time of the algorithms is 3
minutes. Averaged over 100 data sets.

4.4 Empirical Complexity of the Algorithm as a Function of 𝑝

We also evaluate the slope coefficient 𝛼 of the run time curve of GeomFPOP with random sampling
of the past and future candidates for all considered dimensions. In Figure 8 we can see that already
for 𝑝 ≥ 7 𝛼 is close to 2.

Figure 8: Run time dependence of (random/random) approach of GeomFPOP (R-type) on dimension
𝑝.

4.5 Run Time as a Function of the Number of Segments

For small dimensions we also generated time series with 𝑛 = 106 data points with increasing number
of segments. We have considered the following number of segments: (1, 2, 5) × 10𝑖 (for 𝑖 = 0, … , 3)
and 104. The mean was equal to 1 for even segments, and 0 for odd segments. In Figure 9 we can
see the run time dependence of the (random/random) approach of GeomFPOP (R-type) and PELT on
the number of segments for this type of time series. For smaller number of segments (the threshold

17

between small and large numbers of segments is around 5 × 103 for all considered dimensions 𝑝)
GeomFPOP (random/random) is an order of magnitude faster. But for large number of segments, it
can be seen that the run times (both PELT and GeomFPOP) are larger. This might be a bit counter-
intuitive. However, it is essential to recall that a similar trend of increased run time for a large number
of segments was already noted in the one-dimensional case, as demonstrated in (Maidstone et al.
2017). This observation is explained as follows. When the number of segments becomes excessively
large, the algorithm (both PELT and GeomFPOP) tends to interpret this abundance as an indication
of no change, resulting in reduced pruning. As a conclusion of this simulation study, in Section 5.7
we make a similar analysis, but using time series in which changes are present only in a subset of
dimensions. We observe that in this case GeomFPOP (random/random) will be slightly less effective
but no worse than no change (see Figure 13).

Figure 9: Run time dependence of (random/random) approach of GeomFPOP (R-type) on the number
of segments in time series with 106 data points.

Acknowledgments

We thank Paul Fearnhead for fruitful discussions.

5 Supplements

5.1 Examples of Likelihood-Based Cost Functions

We define a cost function for segmentation as in equation (Equation 1) by the function Ω(⋅, ⋅) (the
opposite log-likelihood (times two)). Below is the expression of this function linked to data point
𝑦𝑖 = (𝑦1𝑖 , … , 𝑦𝑝𝑖) in ℝ𝑝 for three examples of parametric multivariate models:

Ω(𝜃, 𝑦𝑖) =

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

𝑝
∑
𝑘=1

(𝑦𝑘𝑖 − 𝜃𝑘)2 , if 𝑦𝑖 ∼ 𝒩𝑝(𝜃, 𝜎2𝕀𝑝) ,

2
𝑝
∑
𝑘=1

{𝜃𝑘 − log (
(𝜃𝑘)𝑦

𝑘
𝑖

𝑦𝑘𝑖 !
)} , if 𝑦𝑖 ∼ 𝒫 (𝜃) ,

− 2
𝑝
∑
𝑘=1

log ((𝜃𝑘)𝑦
𝑘
𝑖 (1 − 𝜃𝑘)𝜙 (𝑦

𝑘
𝑖 + 𝜙 − 1

𝑦𝑘𝑖
)) , if 𝑦𝑖 ∼ 𝒩ℬ(𝜃, 𝜙) .

(12)

18

We suppose that the over-dispersion parameter 𝜙 of the multivariate negative binomial distribution
is known.

5.2 Intersection and Inclusion of Two p-balls

We define two 𝑝-balls, 𝑆 and 𝑆′ in ℝ𝑝 using their centers 𝑐, 𝑐′ ∈ ℝ𝑝 and radius 𝑅, 𝑅′ ∈ ℝ+ as

𝑆 = {𝑥 ∈ ℝ𝑝, ||𝑥 − 𝑐||2 ≤ 𝑅2} and 𝑆′ = {𝑥 ∈ ℝ𝑝, ||𝑥 − 𝑐′||2 ≤ 𝑅′2},

where ||𝑥 − 𝑐||2 = ∑𝑝
𝑘=1(𝑥

𝑘 − 𝑐𝑘)2, with 𝑥 = (𝑥1, ..., 𝑥𝑝) ∈ ℝ𝑝, is the Euclidean norm. The distance
between centers 𝑐 and 𝑐′ is defined as 𝑑(𝑐, 𝑐′) = √||𝑐 − 𝑐′||2. We have the following simple results:

𝑆 ∩ 𝑆′ = ∅ ⟺ 𝑑(𝑐, 𝑐′) > 𝑅 + 𝑅′ ,

𝑆 ⊂ 𝑆′ or 𝑆′ ⊂ 𝑆 ⟺ 𝑑(𝑐, 𝑐′) ≤ |𝑅 − 𝑅′| .

5.3 Intersection and Inclusion Tests

Remark. For any 𝑆 𝑖𝑗 ∈ S its associated function 𝑠 can be redefine after normalization by constant
𝑗 − 𝑖 + 1 as:

𝑠(𝜃) = 𝑎(𝜃) + ⟨𝑏, 𝜃⟩ + 𝑐,

with 𝑎(⋅) is some convex function depending on 𝜃, 𝑏 = {𝑏𝑘}𝑘=1,…,𝑝 ∈ ℝ𝑝 and 𝑐 ∈ ℝ.

For example, in the Gaussian case, the elements have the following form:

𝑎 ∶ 𝜃 ↦ 𝜃2 , 𝑏𝑘 = 2 ̄𝑌 𝑘𝑖∶𝑗 , 𝑐 = ̄𝑌 2𝑖∶𝑗 − Δ𝑖𝑗 ,

where ̄𝑌 𝑘𝑖∶𝑗 =
1

𝑗−𝑖+1 ∑
𝑗
𝑢=𝑖+1 𝑦𝑘𝑢 and ̄𝑌 2𝑖∶𝑗 =

1
𝑗−𝑖+1 ∑

𝑗
𝑢=𝑖+1∑

𝑝
𝑘=1(𝑦

𝑘
𝑢)2.

Definition 5.1. For all 𝜃 ∈ ℝ𝑝 and 𝑆1, 𝑆2 ∈ S with their associated functions, 𝑠1 and 𝑠2, we define a
function ℎ12 and a hyperplane 𝐻12 as:

ℎ12(𝜃) ∶= 𝑠2(𝜃) − 𝑠1(𝜃) , 𝐻12 ∶= {𝜃 ∈ ℝ𝑝|ℎ12(𝜃) = 0} .

We denote by 𝐻+
12 ∶= {𝜃 ∈ ℝ𝑝|ℎ12(𝜃) > 0} and 𝐻−

12 ∶= {𝜃 ∈ ℝ𝑝|ℎ12(𝜃) < 0} the positive and negative
half-spaces of 𝐻12, respectively. We call H the set of hyperplanes.

For all 𝑆 ∈ S and 𝐻 ∈ H we introduce a half − space operator.

Definition 5.2. The operator half − space is such that:

1. the left input is an S-type set 𝑆;
2. the right input is a hyperplane 𝐻;
3. the output is the half-spaces of 𝐻, such that 𝑆 lies in those half-spaces.

Definition 5.3. We define the output of half − space(𝑆, 𝐻) by the following rule:

1. We find two points, 𝜃1, 𝜃2 ∈ ℝ𝑝, as:

19

⎧⎪
⎨⎪
⎩

𝜃1 = 𝐴𝑟𝑔min 𝑠(𝜃),

𝜃2 = {
𝐴𝑟𝑔min

𝜃∈𝑆
ℎ(𝜃), if 𝜃1 ∈ 𝐻+,

𝐴𝑟𝑔max
𝜃∈𝑆

ℎ(𝜃), if 𝜃1 ∈ 𝐻−.

2. We have:

half − space(𝑆, 𝐻) =
⎧

⎨
⎩

{𝐻+}, if 𝜃1, 𝜃2 ∈ 𝐻+,
{𝐻−}, if 𝜃1, 𝜃2 ∈ 𝐻−,

{𝐻+, 𝐻−}, otherwise.

Lemma 5.1. 𝑆1 ⊂ 𝐻−
12 ⇔ 𝜕𝑆1 ⊂ 𝐻−

12, where 𝜕(⋅) denote the frontier operator.

The proof of Lemma 5.1 follows from the convexity of 𝑆1.

Lemma 5.2. 𝑆1 ⊂ 𝑆2 (resp. 𝑆2 ⊂ 𝑆1)⇔ 𝑆1, 𝑆2 ⊂ 𝐻−
12 (resp. 𝑆1, 𝑆2 ⊂ 𝐻+

12).

Proof. We have the hypothesis ℋ0 ∶ {𝑆1 ⊂ 𝑆2}, then

∀𝜃 ∈ 𝜕𝑆1 {
𝑠1(𝜃) = 0, [by Definition 1.1]
𝑠2(𝜃) ≤ 0, [by ℋ0]

⇒ 𝜃 ∈ 𝐻−
12 ⇒ 𝜕𝑆1 ⊂ 𝐻−

12.

Thus, according to Lemma 5.1, 𝑆1 ⊂ 𝐻−
12.

We have now the hypothesis ℋ0 ∶ {𝑆1, 𝑆2 ⊂ 𝐻−
12}, then

∀𝜃 ∈ 𝑆1 {
𝑠1(𝜃) ≤ 0, [by Definition 1.1]

ℎ12(𝜃) < 0, [by ℋ0, Definitions 5.1 and 1.1]
⇒ 𝜃 ∈ 𝑆2 ⇒ 𝑆1 ⊂ 𝑆2.

Similarly, it is easy to show that 𝑆2 ⊂ 𝑆1 ⇔ 𝑆1, 𝑆2 ⊂ 𝐻+
12.

Lemma 5.3. 𝑆1 ∩ 𝑆2 = ∅ ⇔ 𝐻12 is a separating hyperplane of 𝑆1 and 𝑆2.

Proof. We have the hypothesis ℋ0 ∶ {𝑆1 ⊂ 𝐻+
12, 𝑆2 ⊂ 𝐻−

12}. Thus, 𝐻12 is a separating hyperplane of
𝑆1 and 𝑆2 then, according to its definition, 𝑆1 ∩ 𝑆2 = ∅.

We have now the hypothesis ℋ0 ∶ {𝑆1 ∩ 𝑆2 = ∅} then

∀𝜃 ∈ 𝑆1 {
𝑠1(𝜃) ≤ 0, [by Definition 1.1]
𝑠2(𝜃) > 0, [by ℋ0, Definition 1.1]

⇒ 𝜃 ∈ 𝐻+
12.

∀𝜃 ∈ 𝑆2 {
𝑠1(𝜃) > 0, [by ℋ0, Definition 1.1]
𝑠2(𝜃) ≤ 0, [by Definition 1.1]

⇒ 𝜃 ∈ 𝐻−
12.

Consequently, 𝐻12 is a separating hyperplane of 𝑆1 and 𝑆2.

Proposition 5.1. To detect set inclusion 𝑆1 ⊂ 𝑆2 and emptiness of set intersection 𝑆1 ∩ 𝑆2, it is necessary:

1. build the hyperplane 𝐻12;

20

2. apply the half − space operator for couples (𝑆1, 𝐻12) and (𝑆2, 𝐻12) to know in which half-space(s)
𝑆1 and 𝑆2 are located;

3. check the conditions in Lemmas 5.2 and 5.3.

5.4 Proof of Proposition 3.2

Proof. Let c = {c𝑘}𝑘=1,…,𝑝 is the minimal point of 𝑆, defined as in equation (10). In the intersection case,
we consider solving the optimization problem (9) for the boundaries ̃𝑙𝑘 and ̃𝑟𝑘, removing constraint
𝑙𝑘 ≤ 𝜃𝑘 ≤ 𝑟𝑘. If 𝑅 intersects 𝑆, the optimal solution 𝜃𝑘 belongs to the boundary of 𝑆 due to our simple
(axis-aligned rectangular) inequality constraints and we get

𝑠𝑘(𝜃𝑘) = −∑
𝑗≠𝑘

𝑠𝑗(𝜃 𝑗) + Δ . (13)

We are looking for minimum and maximum values in 𝜃𝑘 for this equation with constraints 𝑙 𝑗 ≤ 𝜃 𝑗 ≤ 𝑟 𝑗
(𝑗 ≠ 𝑘). Using the convexity of 𝑠𝑘 and 𝑠𝑗, we need to maximize the quantity in the right-hand side.
Thus, the solution ̃𝜃 𝑗 for each 𝜃 𝑗 is the minimal value of ∑𝑗≠𝑘 𝑠𝑗(𝜃 𝑗) under constraint 𝑙 𝑗 ≤ 𝜃 𝑗 ≤ 𝑟 𝑗 and
the result can only be 𝑙 𝑗, 𝑟 𝑗 or c𝑗. Looking at all coordinates at the same time, the values for ̃𝜃 ∈ ℝ𝑝
corresponds to the closest point m = {m𝑘}𝑘=1,…,𝑝. Having found 𝜃𝑘1 and 𝜃𝑘2 using ̃𝜃 the result in
equation (11) is obvious considering current boundaries 𝑙𝑘 and 𝑟𝑘.

In exclusion case, we remove from 𝑅 the biggest possible rectangle included into 𝑆 ∩ {𝑙 𝑗 ≤ 𝜃 𝑗 ≤
𝑟 𝑗 , 𝑗 ≠ 𝑘}, which correspond to minimizing the right hand side of equation (13), that is maximizing
∑𝑗≠𝑘 𝑠𝑗(𝜃 𝑗) under constraint 𝑙 𝑗 ≤ 𝜃 𝑗 ≤ 𝑟 𝑗 (𝑗 ≠ 𝑘). In that case, the values for ̃𝜃 correspond to the greatest
value returned by ∑𝑗≠𝑘 𝑠𝑗(𝜃 𝑗) on interval boundaries. With convex functions 𝑠𝑗, it corresponds to the
farthest point M = {M𝑘}𝑘=1,…,𝑝.

5.5 Optimization Strategies for GeomFPOP (R-type)

In GeomFPOP(R-type) at each iteration, we need to consider all past and future spheres of change 𝑖.
As it was said in Section 4, in practice it is often sufficient to consider just a few of them to get an
empty set. Thus, we propose to limit the number of operations ∩𝑅 no more than two:

• last. At time 𝑡 we update hyperrectangle by only one operation, this is an intersection with
the last S-type set 𝑆 𝑖𝑡 from ℱ 𝑖(𝑡).

• random. At time 𝑡 we update the hyperrectangle by only two operations. First, this is an
intersection with the last S-type set 𝑆 𝑖𝑡 from ℱ 𝑖(𝑡), and second, this is an intersection with
other random S-type set from ℱ 𝑖(𝑡).

The number of operations ∖𝑅 we limit no more than one:

• empty. At time 𝑡 we do not perform ∖𝑅 operations.
• random. At time 𝑡 we update hyperrectangle by only one operation: exclusion with a random
S-type set from 𝒫 𝑖.

According to these notations, the approach presented in the original GeomFPOP (R-type) has the
form (all/all). We show the impact of introduced limits on the number of change point candidates
retained over time and evaluate their run times. The results are presented in Figures 10 and 11.

Even though the (random/random) approach reduces the quality of pruning in dimensions 𝑝 = 2, 3
and 4, it gives a significant gain in the run time compared to the original GeomFPOP (R-type) and is
at least comparable to the (last/random) approach.

21

Figure 10: Ratio number of candidate change point over time by different optimization approaches of
GeomFPOP (R-type) in dimension 𝑝 = 2, 3 and 4. Averaged over 100 data sets without changes with
104 data points.

Figure 11: Run time of different optimization approaches of GeomFPOP (R-type) using multivariate
time series without change points. The maximum run time of the algorithms is 3 minutes. Averaged
over 100 data sets.

22

5.6 The number of change point candidates in time: GeomFPOP vs. PELT

In this appendix we compare the square of the number of candidates stored by GeomFPOP (S and
R-type) to the corresponding number of candidates stored by PELT over time. Indeed, the complexity
of GeomFPOP at each time step is a function of the square of the number of candidates, while, for
PELT, of the number of candidates (see Section 4.2). Figure 12 shows the ratios of these computed
quantities for dimension 2 ≤ 𝑝 ≤ 10. It is noteworthy that for both S-type and R-type for 𝑝 = 2
this ratio is almost always less than 1 and decreases with time. This is coherent with the fact that
GeomFPOP is faster than PELT (see Figure 6). At 𝑝 = 3 for the R-type this ratio is approximately 1,
while for the S-type it is greater than 1 and continues to increase with increasing 𝑡 value. For sizes
3 < 𝑝 ≤ 10, this ratio remains consistently greater than 1 for both S-type and R-type, showing a
continuous increasing trend with time. This is coherent with the fact that GeomFPOP is almost as
fast as PELT for 𝑝 = 3 and slower than PELT for 𝑝 ≤ 4 (see Figure 6).

Figure 12: The ratio of the square of the number of candidates stored in GeomFPOP to the number of
candidates stored in PELT over time. The horizontal black line corresponds to the value 1.

5.7 Run time of the algorithm by multivariate time series with changes in subset
of dimension

We expect GeomFPOP (random/random) to be slightly less effective (but no worse than in the absence
of changes) if changes are only present in a subset of dimensions. To this end, in this appendix for
dimension 2 ≤ 𝑝 ≤ 4 we examine the run time of GeomFPOP (random/random) as in Section 4.5
(see Figure 9) but removing all changes in the last 𝑘 dimensions (with 𝑘 = 0, … , 𝑝 − 1). The results
are presented in Figure 13. There are two regimes. For a small number of segments (the threshold
between small and large numbers of segments is around 2 × 103 for all considered dimensions 𝑝),
the run time decreases with the number of segments and the difference between the run time of
GeomFPOP (random/random) for 𝑘 = 0 (this case corresponds to changes in all dimensions) and
𝑘 > 0 is very small. For larger number of segments, the run time increases with the number of
segments, as in Section 4.5 and also increases with 𝑘. Importantly, in this regime the run time is
never lower than for 1 segment.

References

Aminikhanghahi, Samaneh, and Diane J Cook. 2017. “A Survey of Methods for Time Series Change
Point Detection.” Knowledge and Information Systems 51 (2): 339–67.

23

p = 2 p = 3 p = 4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

Number of segments into a time series with 10⁶ data points

S
e
c
o
n
d
s

k 0 1 2 3

Figure 13: Dependence of the run time of the (random/random) approach of GeomFPOP (R-type) on
the number of segments in a 𝑝-variable time series with 106 data points where all changes in the last
𝑘 dimensions have been removed.

Anastasiou, Andreas, and Piotr Fryzlewicz. 2022. “Detecting Multiple Generalized Change-Points by
Isolating Single Ones.” Metrika 85 (February). https://doi.org/10.1007/s00184-021-00821-6.

Andreou, Elena, and Eric Ghysels. 2002. “Detecting Multiple Breaks in Financial Market Volatility
Dynamics.” Journal of Applied Econometrics 17 (5): 579–600. http://www.jstor.org/stable/4129273.

Aue, Alexander, Lajos Horváth, Marie Hušková, and Piotr Kokoszka. 2006. “Change-Point Monitoring
in Linear Models.” The Econometrics Journal 9 (3): 373–403. http://www.jstor.org/stable/23114925.

Auger, Ivan E., and Charles E. Lawrence. 1989. “Algorithms for the Optimal Identification of
Segment Neighborhoods.” Bulletin of Mathematical Biology 51 (1): 39–54. https://doi.org/10.1007/
BF02458835.

Bai, Jushan, and Pierre Perron. 2003. “Computation and Analysis of Multiple Structural-Change.”
Journal of Applied Econometrics 18 (January).

Bosc, Marcel, Fabrice Heitz, Jean-Paul Armspach, Izzie Namer, Daniel Gounot, and Lucien Rumbach.
2003. “Automatic Change Detection in Multimodal Serial MRI: Application to Multiple Sclero-
sis Lesion Evolution.” NeuroImage 20(2), 643–56. https://doi.org/https://doi.org/10.1016/S1053-
8119(03)00406-3.

Data, Committee, Committee Statistics, Board Applications, Division Sciences, and National Council.
2013. Frontiers in Massive Data Analysis. Frontiers in Massive Data Analysis. The National
Academies Press. https://doi.org/10.17226/18374.

Davis, Richard A., Thomas C. M. Lee, and Gabriel A. Rodriguez-Yam. 2006. “Structural Break
Estimation for Nonstationary Time Series Models.” Journal of the American Statistical Association
101: 223–39. https://EconPapers.repec.org/RePEc:bes:jnlasa:v:101:y:2006:p:223-239.

Ducré-Robitaille, Jean-François, Lucie A. Vincent, and Gilles Boulet. 2003. “Comparison of Techniques
for Detection of Discontinuities in Temperature Series.” International Journal of Climatology 23.

Fearnhead, Paul, Robert Maidstone, and Adam Letchford. 2018. “Detecting Changes in Slope with an
L0 Penalty.” Journal of Computational and Graphical Statistics, 1–11.

Frick, Klaus, Axel Munk, and Hannes Sieling. 2013. “Multiscale Change-Point Inference.” arXiv.
https://doi.org/10.48550/ARXIV.1301.7212.

Fryzlewicz, Piotr. 2014. “Wild Binary Segmentation for Multiple Change-Point Detection.” The
Annals of Statistics 42 (6). https://doi.org/10.1214/14-aos1245.

Galceran, Enric, Alexander Cunningham, Ryan Eustice, and Edwin Olson. 2017. “Multipolicy
Decision-Making for Autonomous Driving via Changepoint-Based Behavior Prediction: Theory
and Experiment.” Autonomous Robots 41 (August). https://doi.org/10.1007/s10514-017-9619-z.

24

https://doi.org/10.1007/s00184-021-00821-6
http://www.jstor.org/stable/4129273
http://www.jstor.org/stable/23114925
https://doi.org/10.1007/BF02458835
https://doi.org/10.1007/BF02458835
https://doi.org/10.1016/S1053-8119(03)00406-3
https://doi.org/10.1016/S1053-8119(03)00406-3
https://doi.org/10.17226/18374
https://EconPapers.repec.org/RePEc:bes:jnlasa:v:101:y:2006:p:223-239
https://doi.org/10.48550/ARXIV.1301.7212
https://doi.org/10.1214/14-aos1245
https://doi.org/10.1007/s10514-017-9619-z

Hall, Peter, J. W. Kay, and D. M. Titterington. 1990. “Asymptotically Optimal Difference-Based
Estimation of Variance in Nonparametric Regression.” Biometrika 77 (3): 521–28. http://www.
jstor.org/stable/2336990.

Hampel, Frank R. 1974. “The Influence Curve and Its Role in Robust Estimation.” Journal of the
American Statistical Association 69 (346): 383–93. http://www.jstor.org/stable/2285666.

Harchaoui, Z., and C. Lévy-Leduc. 2010. “Multiple Change-Point Estimation with a Total Variation
Penalty.” Journal of the American Statistical Association. 105 (492): 1480–93. http://www.jstor.
org/stable/27920180.

Jackson, Brad, Jeffrey D Scargle, David Barnes, Sundararajan Arabhi, Alina Alt, Peter Gioumousis,
Elyus Gwin, Paungkaew Sangtrakulcharoen, Linda Tan, and Tun Tao Tsai. 2005. “An Algorithm
for Optimal Partitioning of Data on an Interval.” IEEE Signal Processing Letters 12 (2): 105–8.

Jewell, Sean, Paul Fearnhead, and Daniela Witten. 2019. “Testing for a Change in Mean After
Changepoint Detection.” arXiv. https://doi.org/10.48550/ARXIV.1910.04291.

Killick, Rebecca, Paul Fearnhead, and Idris A. Eckley. 2012. “Optimal Detection of Changepoints with
a Linear Computational Cost.” Journal of the American Statistical Association 107 (500): 1590–98.

Lai, Weil R, Mark D Johnson, Raju Kucherlapati, and Peter J Park. 2005. “Comparative Analysis of
Algorithms for Identifying Amplifications and Deletions in Array CGH Data.” Bioinformatics 21
(19): 3763–70.

Lavielle, Marc, and Émilie Lebarbier. 2001. “An Application of MCMC Methods for the Multiple
Change-Points Problem.” Signal Processing 81: 39–53. https://api.semanticscholar.org/CorpusID:
9866087.

Lavielle, Marc, and Eric Moulines. 2000. “Least-Squares Estimation of an Unknown Number of Shifts
in a Time Series.” Journal of Time Series Analysis 21 (1): 33–59.

Lebarbier, Emilie. 2005. “DetectingMultiple Change-Points in theMean of Gaussian Process byModel
Selection.” Signal Processing 85 (April): 717–36. https://doi.org/10.1016/j.sigpro.2004.11.012.

Liehrmann, Arnaud, Etienne Delannoy, Alexandra Launay-Avon, Elodie Gilbault, Olivier Loudet,
Benoı̂t Castandet, and Guillem Rigaill. 2023. “DiffSegR: an RNA-seq data driven method for
differential expression analysis using changepoint detection.” NAR Genomics and Bioinformatics
5 (4): lqad098. https://doi.org/10.1093/nargab/lqad098.

Liehrmann, Arnaud, Guillem Rigaill, and Toby Dylan Hocking. 2021. “Increased Peak Detection
Accuracy in over-Dispersed ChIP-Seq Data with Supervised Segmentation Models.” BMC Bioin-
formatics 22 (1): 1–18.

Maidstone, Robert, Toby Hocking, Guillem Rigaill, and Paul Fearnhead. 2017. “On Optimal Multiple
Changepoint Algorithms for Large Data.” Statistics and Computing 27 (2): 519–33.

Malladi, Rakesh, Giridhar P. Kalamangalam, and Behnaam Aazhang. 2013. “Online Bayesian Change
Point Detection Algorithms for Segmentation of Epileptic Activity.” 2013 Asilomar Conference on
Signals, Systems and Computers, 1833–37.

Naoki, Itoh, and Juergen Kurths. 2010. “Change-Point Detection of Climate Time Series by Nonpara-
metric Method.” Lecture Notes in Engineering and Computer Science 2186 (October).

Olshen, Adam, E. S. Venkatraman, Robert Lucito, and Michael Wigler. 2004. “Circular Binary
Segmentation for the Analysis of Array-Based DNA Copy Number Data.” Biostatistics (Oxford,
England) 5 (November): 557–72. https://doi.org/10.1093/biostatistics/kxh008.

Picard, Franck, Stephane Robin, Marc Lavielle, Christian Vaisse, and Jean-Jacques Daudin. 2005. “A
Statistical Approach for Array CGH Data Analysis.” BMC Bioinformatics 6: np. https://doi.org/10.
1186/1471-2105-6-27.

Radke, R. J., S. Andra, O. Al-Kofahi, and B. Roysam. 2005. “Image Change Detection Algorithms: A
Systematic Survey.” IEEE Transactions on Image Processing 14 (3): 294–307. https://doi.org/10.
1109/TIP.2004.838698.

Ranganathan, Ananth. 2012. “PLISS: Labeling Places Using Online Changepoint Detection.” Auton.
Robots 32 (4): 351–68. https://doi.org/10.1007/s10514-012-9273-4.

25

http://www.jstor.org/stable/2336990
http://www.jstor.org/stable/2336990
http://www.jstor.org/stable/2285666
http://www.jstor.org/stable/27920180
http://www.jstor.org/stable/27920180
https://doi.org/10.48550/ARXIV.1910.04291
https://api.semanticscholar.org/CorpusID:9866087
https://api.semanticscholar.org/CorpusID:9866087
https://doi.org/10.1016/j.sigpro.2004.11.012
https://doi.org/10.1093/nargab/lqad098
https://doi.org/10.1093/biostatistics/kxh008
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1186/1471-2105-6-27
https://doi.org/10.1109/TIP.2004.838698
https://doi.org/10.1109/TIP.2004.838698
https://doi.org/10.1007/s10514-012-9273-4

Reeves, Jaxk, Jien Chen, Xiaolan L. Wang, Robert Lund, and Qi Qi Lu. 2007. “A Review and Compari-
son of Changepoint Detection Techniques for Climate Data.” Journal of Applied Meteorology and
Climatology 46 (6): 900–915. https://doi.org/10.1175/JAM2493.1.

Rigaill, Guillem. 2015. “A Pruned Dynamic Programming Algorithm to Recover the Best Segmenta-
tions with 1 to 𝐾𝑚𝑎𝑥 Change-Points.” Journal de La Société Française de Statistique 156 (4): 180–205.
http://www.numdam.org/item/JSFS_2015__156_4_180_0/.

Runge, Vincent. 2020. “Is a Finite Intersection of Balls Covered by a Finite Union of Balls in Euclidean
Spaces?” Journal of Optimization Theory and Applications 187 (2): 431–47.

Rybach, David, Christian Gollan, Ralf Schluter, and Hermann Ney. 2009. “Audio Segmentation for
Speech Recognition Using Segment Features.” In 2009 IEEE International Conference on Acoustics,
Speech and Signal Processing, 4197–4200. https://doi.org/10.1109/ICASSP.2009.4960554.

Staudacher, Martin, Stefan Telser, Anton Amann, Hartmann Hinterhuber, and Monika Ritsch-Marte.
2005. “A New Method for Change-Point Detection Developed for on-Line Analysis of the Heart
Beat Variability During Sleep.” Physica A-Statistical Mechanics and Its Applications 349: 582–96.

Truong, Charles, Laurent Oudre, and Nicolas Vayatis. 2020. “Selective Review of Offline Change
Point Detection Methods.” Signal Processing 167: 107299.

Verzelen, Nicolas, Magalie Fromont, Matthieu Lerasle, and Patricia Reynaud-Bouret. 2020. “Optimal
Change-Point Detection and Localization.” arXiv. https://doi.org/10.48550/ARXIV.2010.11470.

Yao, Yi-Ching. 1988. “Estimating the Number of Change-Points via Schwarz’ Criterion.” Statistics &
Probability Letters 6 (3): 181–89. https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:i:3:p:
181-189.

Zhang, Nancy, andDavid Siegmund. 2007. “AModified Bayes Information CriterionwithApplications
to the Analysis of Comparative Genomic Hybridization Data.” Biometrics 63 (April): 22–32.
https://doi.org/10.1111/j.1541-0420.2006.00662.x.

26

https://doi.org/10.1175/JAM2493.1
http://www.numdam.org/item/JSFS_2015__156_4_180_0/
https://doi.org/10.1109/ICASSP.2009.4960554
https://doi.org/10.48550/ARXIV.2010.11470
https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:i:3:p:181-189
https://EconPapers.repec.org/RePEc:eee:stapro:v:6:y:1988:i:3:p:181-189
https://doi.org/10.1111/j.1541-0420.2006.00662.x

	Introduction
	Functional Pruning for Multiple Time Series
	Model and Cost
	Functional Pruning Optimal Partitioning Algorithm
	Geometric Formulation of Functional Pruning

	Geometric Functional Pruning Optimal Partitioning
	General Principle of GeomFPOP

	Approximation Operators \bigcap_{\tilde{Z}} and \setminus_{\tilde{Z}}
	S-type Approximation
	R-type Approximation

	Simulation Study of GeomFPOP
	The Number of Change Point Candidates stored over Time
	Empirical Time Complexity of GeomFPOP
	Empirical Time Complexity of a Randomized GeomFPOP
	Empirical Complexity of the Algorithm as a Function of p
	Run Time as a Function of the Number of Segments

	Acknowledgments
	Supplements
	Examples of Likelihood-Based Cost Functions
	Intersection and Inclusion of Two p-balls
	Intersection and Inclusion Tests
	Proof of Proposition
	Optimization Strategies for GeomFPOP (R-type)
	The number of change point candidates in time: GeomFPOP vs. PELT
	Run time of the algorithm by multivariate time series with changes in subset of dimension

	References

