Species in Jura study site | n | Species in Ain study site | n |
---|---|---|---|
human | 31644 | human | 4946 |
vehicule | 5637 | vehicule | 4454 |
dog | 2779 | dog | 2310 |
fox | 2088 | fox | 1587 |
chamois | 919 | rider | 1025 |
wild boar | 522 | roe deer | 860 |
badger | 401 | chamois | 780 |
roe deer | 368 | hunter | 593 |
cat | 343 | wild boar | 514 |
lynx | 302 | badger | 461 |
1 Introduction
Computer vision is a field of artificial intelligence in which a machine is taught how to extract and interpret the content of an image (Krizhevsky, Sutskever, and Hinton 2012). Computer vision relies on deep learning that allows computational models to learn from training data – a set of manually labelled images – and make predictions on new data – a set of unlabelled images (Baraniuk, Donoho, and Gavish 2020; LeCun, Bengio, and Hinton 2015). With the growing availability of massive data, computer vision with deep learning is being increasingly used to perform tasks such as object detection, face recognition, action and activity recognition or human pose estimation in fields as diverse as medicine, robotics, transportation, genomics, sports and agriculture (Voulodimos et al. 2018).
In ecology in particular, there is a growing interest in deep learning for automatizing repetitive analyses on large amounts of images, such as identifying plant and animal species, distinguishing individuals of the same or different species, counting individuals or detecting relevant features (Christin, Hervet, and Lecomte 2019; Lamba et al. 2019; Weinstein 2018). By saving hours of manual data analyses and tapping into massive amounts of data that keep accumulating with technological advances, deep learning has the potential to become an essential tool for ecologists and applied statisticians.
Despite the promising future of computer vision and deep learning, there are challenging issues toward their wide adoption by the community of ecologists (e.g. Wearn, Freeman, and Jacoby 2019). First, there is a programming barrier as most algorithms are written in the Python
language (but see MXNet in R and the R interface to Keras) while most ecologists are versed in R
(Lai et al. 2019). If ecologists are to use computer vision in routine, there is a need for bridges between these two languages (through, e.g., the reticulate
package Allaire et al. (2017) or the shiny
package Tabak et al. (2020)). Second, ecologists may be reluctant to develop deep learning algorithms that require large amounts of computation time and consequently come with an environmental cost due to carbon emissions (Strubell, Ganesh, and McCallum 2019). Third, recent applications of computer vision via deep learning in ecology have focused on computational aspects and simple tasks without addressing the underlying ecological questions (Sutherland et al. 2013), or carrying out statistical data analysis to answer these questions (Gimenez et al. 2014). Although perfectly understandable given the challenges at hand, we argue that a better integration of the why (ecological questions), the what (automatically labelled images) and the how (statistics) would be beneficial to computer vision for ecology (see also Weinstein 2018).
Here, we showcase a full why-what-how workflow in R
using a case study on the structure of an ecological community (a set of co-occurring species) composed of the Eurasian lynx (Lynx lynx) and its two main preys. First, we introduce the case study and motivate the need for deep learning. Second we illustrate deep learning for the identification of animal species in large amounts of images, including model training and validation with a dataset of labelled images, and prediction with a new dataset of unlabelled images. Last, we proceed with the quantification of spatial co-occurrence using statistical models.
2 Collecting images with camera traps
Lynx (Lynx lynx) went extinct in France at the end of the 19th century due to habitat degradation, human persecution and decrease in prey availability (Vandel and Stahl 2005). The species was reintroduced in Switzerland in the 1970s (Breitenmoser 1998), then re-colonised France through the Jura mountains in the 1980s (Vandel and Stahl 2005). The species is listed as endangered under the 2017 IUCN Red list and is of conservation concern in France due to habitat fragmentation, poaching and collisions with vehicles. The Jura holds the bulk of the French lynx population.
To better understand its distribution, we need to quantify its interactions with its main preys, roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra) (Molinari-Jobin et al. 2007), two ungulate species that are also hunted. To assess the relative contribution of predation and hunting to the community structure and dynamics, a predator-prey program was set up jointly by the French Office for Biodiversity, the Federations of Hunters from the Jura, Ain and Haute-Savoie counties and the French National Centre for Scientific Research. Animal detections were made using a set of camera traps in the Jura mountains that were deployed in the Jura and Ain counties (see Figure 1). Altitude in the Jura site ranges from 520m to 1150m, and from 400m to 950m for the Ain site. Woodland areas cover 69% of the Ain site, with deciduous forests (63%) followed by coniferous (19.5%) and mixed forest (12.5%). In the Jura site, woodland areas cover 62% of the area, with mixed forests (46.6%), deciduous forests (37.3%) and coniferous (14%). In both sites, the remaining habitat is meadows used by cattle.
We divided the two study areas into grids of 2.7 \times 2.7 km cells or sites hereafter (Zimmermann et al. 2013) in which we set two camera traps per site (Xenon white flash with passive infrared trigger mechanisms, model Capture, Ambush and Attack; Cuddeback), with 18 sites in the Jura study area, and 11 in the Ain study area that were active over the study period (from February 2016 to October 2017 for the Jura county, and from February 2017 to May 2019 for the Ain county). The location of camera traps was chosen to maximise lynx detection. More precisely, camera traps were set up along large paths in the forest, on each side of the path at 50cm high. Camera traps were checked weekly to change memory cards, batteries and to remove fresh snow after heavy snowfall.
In total, 45563 and 18044 pictures were considered in the Jura and Ain sites respectively after manually droping empty pictures and pictures with unidentified species. Note that classifying empty images could be automatised with deep learning (Norouzzadeh et al. 2021; Tabak et al. 2020). We identified the species present on all images by hand (see Table 1) using digiKam
a free open-source digital photo management application (https://www.digikam.org/). This operation took several weeks of labor full time, which is often identified as a limitation of camera trap studies. To expedite this tedious task, computer vision with deep learning has been identified as a promising approach (Norouzzadeh et al. 2021; Tabak et al. 2019; Willi et al. 2019).
3 Deep learning for species identification
Using the images we obtained with camera traps (Table 1), we trained a model for identifying species using the Jura study site as a calibration dataset. We then assessed this model’s ability to automatically identify species on a new dataset, also known as transferability, using the Ain study site as an evaluation dataset. Even though in the present work we quantified co-occurrence between lynx and its prey, we included other species in the training to investigate the structure and dynamics of the entire community in future work. Also, the use of specific species categories instead of just a “other” category besides the focal species should help the algorithm to determine with better confidence when a picture does not contain a focal species in situations where there is no doubt that this is another species (think of a vehicle for example), or where a species is detected with which a focal species can be confused, e.g. lynx with fox.
3.1 Training - Jura study site
We selected at random 80% of the annotated images for each species in the Jura study site for training, and 20% for testing. We applied various transformations (flipping, brightness and contrast modifications following Shorten and Khoshgoftaar (2019)) to improve training (see Appendix). To reduce model training time and overcome the small number of images, we used transfer learning (Yosinski et al. 2014; Shao, Zhu, and Li 2015) and considered a pre-trained model as a starting point. Specifically, we trained a deep convolutional neural network (ResNet-50) architecture (He et al. 2016) using the fastai
library (https://docs.fast.ai/) that implements the PyTorch
library (Paszke et al. 2019). Interestingly, the fastai
library comes with an R
interface (https://eagerai.github.io/fastai/) that uses the reticulate
package to communicate with Python
, therefore allowing R
users to access up-to-date deep learning tools. We trained models on the Montpellier Bioinformatics Biodiversity platform using a GPU machine (Titan Xp nvidia) with 16Go of RAM. We used 20 epochs which took approximately 10 hours. The computational burden prevented us from providing a full reproducible analysis, but we do so with a subsample of the dataset in the Appendix. All trained models are available from https://doi.org/10.5281/zenodo.5164796.
Using the testing dataset, we calculated three metrics to evaluate our model performance at correctly identifying species (e.g. Duggan et al. 2021). Specifically, we relied on accuracy the ratio of correct predictions to the total number of predictions, recall a measure of false negatives (FN; e.g. an image with a lynx for which our model predicts another species) with recall = TP / (TP + FN) where TP is for true positives, and precision a measure of false positives (FP; e.g. an image with any species but a lynx for which our model predicts a lynx) with precision = TP / (TP + FP). In camera trap studies, a strategy (Duggan et al. 2021) consists in optimizing precision if the focus is on rare species (lynx), while recall should be optimized if the focus is on commom species (chamois and roe deer).
We achieved 85% accuracy during training. Our model had good performances for the three classes we were interested in, with 87% precision for lynx and 81% recall for both roe deer and chamois (Table 2).
species | precision | recall |
---|---|---|
badger | 0.78 | 0.88 |
red deer | 0.67 | 0.21 |
chamois | 0.86 | 0.81 |
cat | 0.89 | 0.78 |
roe deer | 0.67 | 0.81 |
dog | 0.78 | 0.84 |
human | 0.99 | 0.79 |
hare | 0.32 | 0.52 |
lynx | 0.87 | 0.95 |
fox | 0.85 | 0.90 |
wild boar | 0.93 | 0.88 |
vehicule | 0.95 | 0.98 |
3.2 Transferability - Ain study site
We evaluated transferability for our trained model by predicting species on images from the Ain study site which were not used for training. Precision was 77% for lynx, and while we achieved 86% recall for roe deer, our model performed poorly for chamois with 8% recall (Table 3).
precision | recall | |
---|---|---|
badger | 0.71 | 0.89 |
rider | 0.79 | 0.92 |
red deer | 0.00 | 0.00 |
chamois | 0.82 | 0.08 |
hunter | 0.17 | 0.11 |
cat | 0.46 | 0.59 |
roe deer | 0.67 | 0.86 |
dog | 0.77 | 0.35 |
human | 0.51 | 0.93 |
hare | 0.37 | 0.35 |
lynx | 0.77 | 0.89 |
marten | 0.05 | 0.04 |
fox | 0.90 | 0.53 |
wild boar | 0.75 | 0.94 |
cow | 0.01 | 0.25 |
vehicule | 0.94 | 0.51 |
To better understand this pattern, we display the results under the form of a confusion matrix that compares model classifications to manual classifications (Figure 2). There were a lot of false negatives for chamois, meaning that when a chamois was present in an image, it was often classified as another species by our model.
Overall, our model trained on images from the Jura study site did poorly at correctly predicting species on images from the Ain study site. This result does not come as a surprise, as generalizing classification algorithms to new environments is known to be difficult (Beery, Horn, and Perona 2018). While a computer scientist might be disappointed in these results, an ecologist would probably wonder whether ecological inference about the co-occurrence between lynx and its prey is biased by these average performances, a question we address in the next section.
4 Spatial co-occurrence
Here, we analysed the data we acquired from the previous section. For the sake of comparison, we considered two datasets, one made of the images manually labelled for both the Jura and Ain study sites pooled together (ground truth dataset), and the other in which we pooled the images that were manually labelled for the Jura study site and the images that were automatically labelled for the Ain study site using our trained model (classified dataset).
We formatted the data by generating monthly detection histories, that is a sequence of detections (Y_{sit} = 1) and non-detections (Y_{sit} = 0), for species s at site i and sampling occasion t (see Figure 3).
To quantify spatial co-occurrence betwen lynx and its preys, we used a multispecies occupancy modeling approach (Rota et al. 2016) implemented in the R
package unmarked
(Fiske and Chandler 2011) within the maximum likelihood framework. The multispecies occupancy model assumes that observations y_{sit}, conditional on Z_{si} the latent occupancy state of species s at site i are drawn from Bernoulli random variables Y_{sit} | Z_{si} \sim \text{Bernoulli}(Z_{si}p_{sit}) where p_{sit} is the detection probability of species s at site i and sampling occasion t. Detection probabilities can be modeled as a function of site and/or sampling covariates, or the presence/absence of other species, but for the sake of illustration, we will make them only species-specific here.
The latent occupancy states are assumed to be distributed as multivariate Bernoulli random variables (Dai, Ding, and Wahba 2013). Let us consider 2 species, species 1 and 2, then Z_i = (Z_{i1}, Z_{i2}) \sim \text{multivariate Bernoulli}(\psi_{11}, \psi_{10}, \psi_{01}, \psi_{00}) where \psi_{11} is the probability that a site is occupied by both species 1 and 2, \psi_{10} the probability that a site is occupied by species 1 but not 2, \psi_{01} the probability that a site is occupied by species 2 but not 1, and \psi_{00} the probability a site is occupied by none of them. Note that we considered species-specific only occupancy probabilities but these could be modeled as site-specific covariates. Marginal occupancy probabilities are obtained as \Pr(Z_{i1}=1) = \psi_{11} + \psi_{10} and \Pr(Z_{i2}=1) = \psi_{11} + \psi_{01}. With this model, we may also infer co-occurrence by calculating conditional probabilities such as for example the probability of a site being occupied by species 2 conditional of species 1 with \Pr(Z_{i2} = 1| Z_{i1} = 1) = \displaystyle{\frac{\psi_{11}}{\psi_{11}+\psi_{10}}}.
Despite its appeal and increasing use in ecology, multispecies occupancy models can be difficult to fit to real-world data in practice. First, these models are data-hungry and regularization methods (Clipp et al. 2021) are needed to avoid occupancy probabilities to be estimated at the boundary of the parameter space or with large uncertainty. Second, and this is true for any joint species distribution models, these models quickly become very complex with many parameters to be estimated when the number of species increases and co-occurrence is allowed between all species. Here, ecological expertise should be used to consider only meaningful species interactions and apply parsimony when parameterizing models.
We now turn to the results obtained from a model with five species namely lynx, chamois, roe deer, fox and cat and co-occurrence allowed between lynx and chamois and roe deer only.
Detection probabilities were indistinguishable (at the third decimal) whether we used the ground truth or the classified dataset, with p_{\text{lynx}} = 0.51 (0.45, 0.58), p_{\text{roe deer}} = 0.63 (0.57, 0.68) and p_{\text{chamois}} = 0.61 (0.55, 0.67).
We also found that occupancy probability estimates were similar whether we used the ground truth or the classified dataset (Figure 4). Roe deer was the most prevalent species, but lynx and chamois were also occurring with high probability (Figure 4). Note that, despite chamois being often misclassified (Figure 2), its marginal occupancy tends to be higher when estimated with the classified dataset. Ecologically speaking, this might well be the case if the correctly classified detections are spread over all camera traps. The difference in marginal occupancy seems however non-significant judging by the overlap between the two confidence intervals.

Because marginal occupancy probabilities were high, probabilities of co-occurrence were also estimated high (Figure 5). Our results should be interpreted bearing in mind that co-occurrence is a necessary but not sufficient condition for actual interaction. When both preys were present, lynx was more present than when they were both absent (Figure 5). Lynx was more sensitive to the presence of roe deer than that of chamois (Figure 5).

Overall, we found similar or higher uncertainty in estimates obtained from the classified dataset (Figure 4 and Figure 5). Sample size being similar for both datasets, we do not have a solid explanation for this pattern.
5 Discussion
In this paper, we aimed at illustrating a reproducible workflow for studying the structure of an animal community and species spatial co-occurrence (why) using images acquired from camera traps and automatically labelled with deep learning (what) which we analysed with statistical occupancy models accounting for imperfect species detection (how). Overall, we found that, even though model transferability could be improved, inference about the co-occurrence of lynx and its preys was similar whether we analysed the ground truth data or classified data.
This result calls for further work on the trade-offs between time and resources allocated to train models with deep learning and our ability to correctly answer key ecological questions with camera-trap surveys. In other words, while a computer scientist might be keen on spending time training models to achieve top performances, an ecologist would rather rely on a model showing average performances and use this time to proceed with statistical analyses if, of course, errors in computer-annotated images do not make ecological inference flawed. The right balance may be found with collaborative projects in which scientists from artificial intelligence, statistics and ecology agree on a common objective, and identify research questions that can pick the interest of all parties.
Our demonstration remains however empirical, and ecological inference might no longer be robust to misclassification if detection and non-detections were pooled weekly or daily, or if more complex models, e.g. including time-varying detection probabilities and/or habitat-specific occupancy probabilities, were fitted to the data. Therefore, we encourage others to try and replicate our results. In that spirit, we praise previous work on plants which used deep learning to produce occurrence data and tested the sensitivity of species distribution models to image classification errors (Botella et al. 2018). We also see two avenues of research that could benefit the integration of deep learning and ecological statistics. First, a simulation study could be conducted to evaluate bias and precision in ecological parameter estimators with regard to errors in image annotation by computers. The outcome of this exercise could be, for example, guidelines informing on the confidence an investigator may place in ecological inference as a function of the amount of false negatives and false positives. Second, annotation errors could be accomodated directly in statistical models. For example, single-species occupancy models account for false negatives when a species is not detected by the camera at a site where it is present, as well as false positives when a species is detected at a site where it is not present due to species misidentification by the observer (Miller et al. 2011). Pending a careful distinction between ecological vs. computer-generated false negatives and false positives, error rates could be added to multispecies occupancy models (Chambert et al. 2018) and informed by recall and precision metrics obtained during model training (Tabak et al. 2020). An alternative quick and dirty approach would consist in adopting a Monte Carlo approach by sampling the species detected or non-detected in each picture according to its predicted probability of belonging to a given class, then building the corresponding dataset and fitting occupancy models to it for each sample.
When it comes to the case study, our results should be discussed with regard to the sensitivity of co-occurrence estimates to errors in automatic species classification. In particular, we expected that confusions between the two prey species might artificially increase the estimated probability of co-occurrence with lynx. This was illustrated by \Pr(\text{lynx present} | \text{roe deer present and chamois absent}) (resp. \Pr(\text{lynx present} | \text{roe deer absent and chamois present})) being estimated higher (resp. lower) with the classified than the ground truth dataset (Figure 5). This pattern could be explained by chamois being often classified as (and confused with) roe deer (Figure 2).
Our results are only preliminary and we see several perspectives to our work. First, we focused our analysis on lynx and its main prey, while other species should be included to get a better understanding of the community structure. For example, both lynx and fox prey on small rodents and birds and a model including co-occurrence between these two predators showed better support by the data (AIC was 1544 when co-occurrence was included vs. 1557 when it was not). Second, we aim at quantifying the relative contribution of biotic (lynx predation on chamois and roe deer) and abiotic (habitat quality) processes to the composition and dynamic of this ecological community. Third, to benefit future camera trap studies of lynx in the Jura mountains, we plan to train a model again using more manually annotated images from both the Jura and the Ain study sites. These perspectives are the object of ongoing work.
With the rapid advances in technologies for biodiversity monitoring (Lahoz-Monfort and Magrath 2021), the possibility of analysing large amounts of images makes deep learning appealing to ecologists. We hope that our proposal of a reproducible R
workflow for deep learning and statistical ecology will encourage further studies in the integration of these disciplines, and contribute to the adoption of computer vision by ecologists.
6 Appendix: Reproducible example of species identification on camera trap images with CPU
In this section, we go through a reproducible example of the entire deep learning workflow, including data preparation, model training, and automatic labeling of new images. We used a subsample of 467 images from the original dataset in the Jura county to allow the training of our model with CPU on a personal computer. We also used 14 images from the original dataset in the Ain county to illustrate prediction.
6.1 Training and validation datasets
We first split the dataset of Jura images in two datasets, a dataset for training, and the other one for validation. We use the exifr
package to extract metadata from images, get a list of images names and extract the species from these.
Hide/Show the code
library(exifr)
<- 'pix/pixJura/'
pix_folder <- list.files(path = pix_folder,
file_list recursive = TRUE,
pattern = "*.jpg",
full.names = TRUE)
<-
labels read_exif(file_list) %>%
as_tibble() %>%
unnest(Keywords, keep_empty = TRUE) %>% # keep_empty = TRUE keeps pix with no labels (empty pix)
group_by(SourceFile) %>%
slice_head() %>% # when several labels in a pix, keep first only
ungroup() %>%
mutate(Keywords = as_factor(Keywords)) %>%
mutate(Keywords = fct_explicit_na(Keywords, "wo_tag")) %>% # when pix has no tag
select(SourceFile, FileName, Keywords) %>%
mutate(Keywords = fct_recode(Keywords,
"chat" = "chat forestier",
"lievre" = "lièvre",
"vehicule" = "véhicule",
"ni" = "Non identifié")) %>%
filter(!(Keywords %in% c("ni", "wo_tag")))
Keywords | n |
---|---|
humain | 143 |
vehicule | 135 |
renard | 58 |
sangliers | 33 |
chasseur | 17 |
chien | 14 |
lynx | 13 |
chevreuil | 13 |
chamois | 12 |
blaireaux | 10 |
chat | 8 |
lievre | 4 |
fouine | 1 |
cavalier | 1 |
Then we pick 80\% of the images for training in each category, the rest being used for validation.
Hide/Show the code
# training dataset
<- labels %>%
pix_train select(SourceFile, FileName, Keywords) %>%
group_by(Keywords) %>%
filter(between(row_number(), 1, floor(n()*80/100))) # 80% per category
# validation dataset
<- labels %>%
pix_valid group_by(Keywords) %>%
filter(between(row_number(), floor(n()*80/100) + 1, n()))
Eventually, we store these images in two distinct directories named train
and valid
.
Hide/Show the code
# create dir train/ and copy pix there, organised by categories
dir.create('pix/train') # create training directory
for (i in levels(fct_drop(pix_train$Keywords))) dir.create(paste0('pix/train/',i)) # create dir for labels
for (i in 1:nrow(pix_train)){
file.copy(as.character(pix_train$SourceFile[i]),
paste0('pix/train/', as.character(pix_train$Keywords[i]))) # copy pix in corresp dir
}# create dir valid/ and copy pix there, organised by categories.
dir.create('pix/valid') # create validation dir
for (i in levels(fct_drop(pix_train$Keywords))) dir.create(paste0('pix/valid/',i)) # create dir for labels
for (i in 1:nrow(pix_valid)){
file.copy(as.character(pix_valid$SourceFile[i]),
paste0('pix/valid/', as.character(pix_valid$Keywords[i]))) # copy pix in corresp dir
}# delete pictures in valid/ directory for which we did not train the model
<- setdiff(levels(fct_drop(pix_valid$Keywords)), levels(fct_drop(pix_train$Keywords)))
to_be_deleted if (!is_empty(to_be_deleted)) {
for (i in 1:length(to_be_deleted)){
unlink(paste0('pix/valid/', to_be_deleted[i]))
} }
What is the sample size of these two datasets?
Hide/Show the code
bind_rows("training" = pix_train, "validation" = pix_valid, .id = "dataset") %>%
group_by(dataset) %>%
count(Keywords) %>%
rename(category = Keywords) %>%
kable() %>%
kable_styling()
dataset | category | n |
---|---|---|
training | humain | 114 |
training | vehicule | 108 |
training | chamois | 9 |
training | blaireaux | 8 |
training | sangliers | 26 |
training | renard | 46 |
training | chasseur | 13 |
training | lynx | 10 |
training | chien | 11 |
training | chat | 6 |
training | chevreuil | 10 |
training | lievre | 3 |
validation | humain | 29 |
validation | vehicule | 27 |
validation | chamois | 3 |
validation | blaireaux | 2 |
validation | sangliers | 7 |
validation | renard | 12 |
validation | chasseur | 4 |
validation | lynx | 3 |
validation | chien | 3 |
validation | fouine | 1 |
validation | chat | 2 |
validation | chevreuil | 3 |
validation | lievre | 1 |
validation | cavalier | 1 |
6.2 Transfer learning
We proceed with transfer learning using images from the Jura county (or a subsample more exactly). We first load images and apply standard transformations to improve training (flip, rotate, zoom, rotate, light transform).
Hide/Show the code
library(reticulate)
#reticulate::use_condaenv("gimenez")
library(fastai)
<- ImageDataLoaders_from_folder(
dls path = "pix/",
train = "train",
valid = "valid",
item_tfms = Resize(size = 460),
bs = 10,
batch_tfms = list(aug_transforms(size = 224,
min_scale = 0.75), # transformation
Normalize_from_stats( imagenet_stats() )),
num_workers = 0,
ImageFile.LOAD_TRUNCATED_IMAGES = TRUE)
Then we get the model architecture. For the sake of illustration, we use a resnet18 here, but we used a resnet50 to get the full results presented in the main text.
--2025-07-01 13:28:49-- https://download.pytorch.org/models/resnet18-f37072fd.pth
Resolving download.pytorch.org (download.pytorch.org)... 18.164.174.18, 18.164.174.78, 18.164.174.99, ...
Connecting to download.pytorch.org (download.pytorch.org)|18.164.174.18|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 46830571 (45M) [application/x-www-form-urlencoded]
Saving to: ‘resnet18-f37072fd.pth’
0K .......... .......... .......... .......... .......... 0% 5.34M 8s
50K .......... .......... .......... .......... .......... 0% 10.7M 6s
100K .......... .......... .......... .......... .......... 0% 10.9M 6s
150K .......... .......... .......... .......... .......... 0% 14.7M 5s
200K .......... .......... .......... .......... .......... 0% 14.0M 5s
250K .......... .......... .......... .......... .......... 0% 27.5M 4s
300K .......... .......... .......... .......... .......... 0% 29.8M 4s
350K .......... .......... .......... .......... .......... 0% 20.1M 3s
400K .......... .......... .......... .......... .......... 0% 47.8M 3s
450K .......... .......... .......... .......... .......... 1% 28.2M 3s
500K .......... .......... .......... .......... .......... 1% 44.8M 3s
550K .......... .......... .......... .......... .......... 1% 57.5M 3s
600K .......... .......... .......... .......... .......... 1% 68.9M 3s
650K .......... .......... .......... .......... .......... 1% 40.3M 2s
700K .......... .......... .......... .......... .......... 1% 81.8M 2s
750K .......... .......... .......... .......... .......... 1% 42.7M 2s
800K .......... .......... .......... .......... .......... 1% 73.9M 2s
850K .......... .......... .......... .......... .......... 1% 68.4M 2s
900K .......... .......... .......... .......... .......... 2% 81.9M 2s
950K .......... .......... .......... .......... .......... 2% 44.4M 2s
1000K .......... .......... .......... .......... .......... 2% 87.2M 2s
1050K .......... .......... .......... .......... .......... 2% 141M 2s
1100K .......... .......... .......... .......... .......... 2% 120M 2s
1150K .......... .......... .......... .......... .......... 2% 81.6M 2s
1200K .......... .......... .......... .......... .......... 2% 67.4M 2s
1250K .......... .......... .......... .......... .......... 2% 123M 2s
1300K .......... .......... .......... .......... .......... 2% 137M 2s
1350K .......... .......... .......... .......... .......... 3% 208M 1s
1400K .......... .......... .......... .......... .......... 3% 79.9M 1s
1450K .......... .......... .......... .......... .......... 3% 93.6M 1s
1500K .......... .......... .......... .......... .......... 3% 95.6M 1s
1550K .......... .......... .......... .......... .......... 3% 107M 1s
1600K .......... .......... .......... .......... .......... 3% 181M 1s
1650K .......... .......... .......... .......... .......... 3% 178M 1s
1700K .......... .......... .......... .......... .......... 3% 104M 1s
1750K .......... .......... .......... .......... .......... 3% 157M 1s
1800K .......... .......... .......... .......... .......... 4% 130M 1s
1850K .......... .......... .......... .......... .......... 4% 242M 1s
1900K .......... .......... .......... .......... .......... 4% 123M 1s
1950K .......... .......... .......... .......... .......... 4% 74.9M 1s
2000K .......... .......... .......... .......... .......... 4% 257M 1s
2050K .......... .......... .......... .......... .......... 4% 122M 1s
2100K .......... .......... .......... .......... .......... 4% 376M 1s
2150K .......... .......... .......... .......... .......... 4% 245M 1s
2200K .......... .......... .......... .......... .......... 4% 144M 1s
2250K .......... .......... .......... .......... .......... 5% 312M 1s
2300K .......... .......... .......... .......... .......... 5% 184M 1s
2350K .......... .......... .......... .......... .......... 5% 136M 1s
2400K .......... .......... .......... .......... .......... 5% 290M 1s
2450K .......... .......... .......... .......... .......... 5% 116M 1s
2500K .......... .......... .......... .......... .......... 5% 233M 1s
2550K .......... .......... .......... .......... .......... 5% 368M 1s
2600K .......... .......... .......... .......... .......... 5% 261M 1s
2650K .......... .......... .......... .......... .......... 5% 175M 1s
2700K .......... .......... .......... .......... .......... 6% 228M 1s
2750K .......... .......... .......... .......... .......... 6% 191M 1s
2800K .......... .......... .......... .......... .......... 6% 322M 1s
2850K .......... .......... .......... .......... .......... 6% 177M 1s
2900K .......... .......... .......... .......... .......... 6% 260M 1s
2950K .......... .......... .......... .......... .......... 6% 133M 1s
3000K .......... .......... .......... .......... .......... 6% 268M 1s
3050K .......... .......... .......... .......... .......... 6% 435M 1s
3100K .......... .......... .......... .......... .......... 6% 176M 1s
3150K .......... .......... .......... .......... .......... 6% 292M 1s
3200K .......... .......... .......... .......... .......... 7% 177M 1s
3250K .......... .......... .......... .......... .......... 7% 247M 1s
3300K .......... .......... .......... .......... .......... 7% 343M 1s
3350K .......... .......... .......... .......... .......... 7% 468M 1s
3400K .......... .......... .......... .......... .......... 7% 280M 1s
3450K .......... .......... .......... .......... .......... 7% 314M 1s
3500K .......... .......... .......... .......... .......... 7% 222M 1s
3550K .......... .......... .......... .......... .......... 7% 219M 1s
3600K .......... .......... .......... .......... .......... 7% 470M 1s
3650K .......... .......... .......... .......... .......... 8% 167M 1s
3700K .......... .......... .......... .......... .......... 8% 66.5M 1s
3750K .......... .......... .......... .......... .......... 8% 448M 1s
3800K .......... .......... .......... .......... .......... 8% 88.5M 1s
3850K .......... .......... .......... .......... .......... 8% 421M 1s
3900K .......... .......... .......... .......... .......... 8% 462M 1s
3950K .......... .......... .......... .......... .......... 8% 128M 1s
4000K .......... .......... .......... .......... .......... 8% 464M 1s
4050K .......... .......... .......... .......... .......... 8% 200M 1s
4100K .......... .......... .......... .......... .......... 9% 453M 1s
4150K .......... .......... .......... .......... .......... 9% 455M 1s
4200K .......... .......... .......... .......... .......... 9% 217M 1s
4250K .......... .......... .......... .......... .......... 9% 434M 1s
4300K .......... .......... .......... .......... .......... 9% 462M 1s
4350K .......... .......... .......... .......... .......... 9% 353M 1s
4400K .......... .......... .......... .......... .......... 9% 192M 1s
4450K .......... .......... .......... .......... .......... 9% 467M 1s
4500K .......... .......... .......... .......... .......... 9% 228M 1s
4550K .......... .......... .......... .......... .......... 10% 449M 1s
4600K .......... .......... .......... .......... .......... 10% 477M 1s
4650K .......... .......... .......... .......... .......... 10% 461M 1s
4700K .......... .......... .......... .......... .......... 10% 202M 1s
4750K .......... .......... .......... .......... .......... 10% 353M 1s
4800K .......... .......... .......... .......... .......... 10% 460M 1s
4850K .......... .......... .......... .......... .......... 10% 478M 1s
4900K .......... .......... .......... .......... .......... 10% 217M 1s
4950K .......... .......... .......... .......... .......... 10% 445M 1s
5000K .......... .......... .......... .......... .......... 11% 481M 1s
5050K .......... .......... .......... .......... .......... 11% 199M 1s
5100K .......... .......... .......... .......... .......... 11% 464M 1s
5150K .......... .......... .......... .......... .......... 11% 355M 0s
5200K .......... .......... .......... .......... .......... 11% 466M 0s
5250K .......... .......... .......... .......... .......... 11% 213M 0s
5300K .......... .......... .......... .......... .......... 11% 438M 0s
5350K .......... .......... .......... .......... .......... 11% 484M 0s
5400K .......... .......... .......... .......... .......... 11% 197M 0s
5450K .......... .......... .......... .......... .......... 12% 428M 0s
5500K .......... .......... .......... .......... .......... 12% 475M 0s
5550K .......... .......... .......... .......... .......... 12% 179M 0s
5600K .......... .......... .......... .......... .......... 12% 471M 0s
5650K .......... .......... .......... .......... .......... 12% 458M 0s
5700K .......... .......... .......... .......... .......... 12% 203M 0s
5750K .......... .......... .......... .......... .......... 12% 445M 0s
5800K .......... .......... .......... .......... .......... 12% 469M 0s
5850K .......... .......... .......... .......... .......... 12% 469M 0s
5900K .......... .......... .......... .......... .......... 13% 215M 0s
5950K .......... .......... .......... .......... .......... 13% 351M 0s
6000K .......... .......... .......... .......... .......... 13% 473M 0s
6050K .......... .......... .......... .......... .......... 13% 200M 0s
6100K .......... .......... .......... .......... .......... 13% 397M 0s
6150K .......... .......... .......... .......... .......... 13% 458M 0s
6200K .......... .......... .......... .......... .......... 13% 481M 0s
6250K .......... .......... .......... .......... .......... 13% 212M 0s
6300K .......... .......... .......... .......... .......... 13% 460M 0s
6350K .......... .......... .......... .......... .......... 13% 360M 0s
6400K .......... .......... .......... .......... .......... 14% 209M 0s
6450K .......... .......... .......... .......... .......... 14% 414M 0s
6500K .......... .......... .......... .......... .......... 14% 479M 0s
6550K .......... .......... .......... .......... .......... 14% 461M 0s
6600K .......... .......... .......... .......... .......... 14% 214M 0s
6650K .......... .......... .......... .......... .......... 14% 457M 0s
6700K .......... .......... .......... .......... .......... 14% 472M 0s
6750K .......... .......... .......... .......... .......... 14% 175M 0s
6800K .......... .......... .......... .......... .......... 14% 462M 0s
6850K .......... .......... .......... .......... .......... 15% 485M 0s
6900K .......... .......... .......... .......... .......... 15% 460M 0s
6950K .......... .......... .......... .......... .......... 15% 216M 0s
7000K .......... .......... .......... .......... .......... 15% 469M 0s
7050K .......... .......... .......... .......... .......... 15% 469M 0s
7100K .......... .......... .......... .......... .......... 15% 391M 0s
7150K .......... .......... .......... .......... .......... 15% 185M 0s
7200K .......... .......... .......... .......... .......... 15% 467M 0s
7250K .......... .......... .......... .......... .......... 15% 219M 0s
7300K .......... .......... .......... .......... .......... 16% 449M 0s
7350K .......... .......... .......... .......... .......... 16% 471M 0s
7400K .......... .......... .......... .......... .......... 16% 462M 0s
7450K .......... .......... .......... .......... .......... 16% 202M 0s
7500K .......... .......... .......... .......... .......... 16% 454M 0s
7550K .......... .......... .......... .......... .......... 16% 352M 0s
7600K .......... .......... .......... .......... .......... 16% 212M 0s
7650K .......... .......... .......... .......... .......... 16% 446M 0s
7700K .......... .......... .......... .......... .......... 16% 474M 0s
7750K .......... .......... .......... .......... .......... 17% 414M 0s
7800K .......... .......... .......... .......... .......... 17% 219M 0s
7850K .......... .......... .......... .......... .......... 17% 440M 0s
7900K .......... .......... .......... .......... .......... 17% 453M 0s
7950K .......... .......... .......... .......... .......... 17% 189M 0s
8000K .......... .......... .......... .......... .......... 17% 440M 0s
8050K .......... .......... .......... .......... .......... 17% 483M 0s
8100K .......... .......... .......... .......... .......... 17% 206M 0s
8150K .......... .......... .......... .......... .......... 17% 415M 0s
8200K .......... .......... .......... .......... .......... 18% 476M 0s
8250K .......... .......... .......... .......... .......... 18% 218M 0s
8300K .......... .......... .......... .......... .......... 18% 435M 0s
8350K .......... .......... .......... .......... .......... 18% 356M 0s
8400K .......... .......... .......... .......... .......... 18% 459M 0s
8450K .......... .......... .......... .......... .......... 18% 200M 0s
8500K .......... .......... .......... .......... .......... 18% 448M 0s
8550K .......... .......... .......... .......... .......... 18% 480M 0s
8600K .......... .......... .......... .......... .......... 18% 213M 0s
8650K .......... .......... .......... .......... .......... 19% 445M 0s
8700K .......... .......... .......... .......... .......... 19% 471M 0s
8750K .......... .......... .......... .......... .......... 19% 318M 0s
8800K .......... .......... .......... .......... .......... 19% 461M 0s
8850K .......... .......... .......... .......... .......... 19% 472M 0s
8900K .......... .......... .......... .......... .......... 19% 210M 0s
8950K .......... .......... .......... .......... .......... 19% 437M 0s
9000K .......... .......... .......... .......... .......... 19% 452M 0s
9050K .......... .......... .......... .......... .......... 19% 475M 0s
9100K .......... .......... .......... .......... .......... 20% 480M 0s
9150K .......... .......... .......... .......... .......... 20% 185M 0s
9200K .......... .......... .......... .......... .......... 20% 433M 0s
9250K .......... .......... .......... .......... .......... 20% 455M 0s
9300K .......... .......... .......... .......... .......... 20% 484M 0s
9350K .......... .......... .......... .......... .......... 20% 476M 0s
9400K .......... .......... .......... .......... .......... 20% 209M 0s
9450K .......... .......... .......... .......... .......... 20% 448M 0s
9500K .......... .......... .......... .......... .......... 20% 397M 0s
9550K .......... .......... .......... .......... .......... 20% 183M 0s
9600K .......... .......... .......... .......... .......... 21% 456M 0s
9650K .......... .......... .......... .......... .......... 21% 478M 0s
9700K .......... .......... .......... .......... .......... 21% 209M 0s
9750K .......... .......... .......... .......... .......... 21% 448M 0s
9800K .......... .......... .......... .......... .......... 21% 488M 0s
9850K .......... .......... .......... .......... .......... 21% 200M 0s
9900K .......... .......... .......... .......... .......... 21% 447M 0s
9950K .......... .......... .......... .......... .......... 21% 357M 0s
10000K .......... .......... .......... .......... .......... 21% 214M 0s
10050K .......... .......... .......... .......... .......... 22% 441M 0s
10100K .......... .......... .......... .......... .......... 22% 450M 0s
10150K .......... .......... .......... .......... .......... 22% 472M 0s
10200K .......... .......... .......... .......... .......... 22% 200M 0s
10250K .......... .......... .......... .......... .......... 22% 440M 0s
10300K .......... .......... .......... .......... .......... 22% 470M 0s
10350K .......... .......... .......... .......... .......... 22% 185M 0s
10400K .......... .......... .......... .......... .......... 22% 463M 0s
10450K .......... .......... .......... .......... .......... 22% 472M 0s
10500K .......... .......... .......... .......... .......... 23% 197M 0s
10550K .......... .......... .......... .......... .......... 23% 462M 0s
10600K .......... .......... .......... .......... .......... 23% 464M 0s
10650K .......... .......... .......... .......... .......... 23% 471M 0s
10700K .......... .......... .......... .......... .......... 23% 215M 0s
10750K .......... .......... .......... .......... .......... 23% 341M 0s
10800K .......... .......... .......... .......... .......... 23% 481M 0s
10850K .......... .......... .......... .......... .......... 23% 197M 0s
10900K .......... .......... .......... .......... .......... 23% 469M 0s
10950K .......... .......... .......... .......... .......... 24% 472M 0s
11000K .......... .......... .......... .......... .......... 24% 222M 0s
11050K .......... .......... .......... .......... .......... 24% 431M 0s
11100K .......... .......... .......... .......... .......... 24% 458M 0s
11150K .......... .......... .......... .......... .......... 24% 356M 0s
11200K .......... .......... .......... .......... .......... 24% 201M 0s
11250K .......... .......... .......... .......... .......... 24% 442M 0s
11300K .......... .......... .......... .......... .......... 24% 479M 0s
11350K .......... .......... .......... .......... .......... 24% 208M 0s
11400K .......... .......... .......... .......... .......... 25% 476M 0s
11450K .......... .......... .......... .......... .......... 25% 478M 0s
11500K .......... .......... .......... .......... .......... 25% 176M 0s
11550K .......... .......... .......... .......... .......... 25% 349M 0s
11600K .......... .......... .......... .......... .......... 25% 463M 0s
11650K .......... .......... .......... .......... .......... 25% 479M 0s
11700K .......... .......... .......... .......... .......... 25% 214M 0s
11750K .......... .......... .......... .......... .......... 25% 448M 0s
11800K .......... .......... .......... .......... .......... 25% 480M 0s
11850K .......... .......... .......... .......... .......... 26% 199M 0s
11900K .......... .......... .......... .......... .......... 26% 462M 0s
11950K .......... .......... .......... .......... .......... 26% 361M 0s
12000K .......... .......... .......... .......... .......... 26% 212M 0s
12050K .......... .......... .......... .......... .......... 26% 463M 0s
12100K .......... .......... .......... .......... .......... 26% 459M 0s
12150K .......... .......... .......... .......... .......... 26% 204M 0s
12200K .......... .......... .......... .......... .......... 26% 471M 0s
12250K .......... .......... .......... .......... .......... 26% 466M 0s
12300K .......... .......... .......... .......... .......... 27% 470M 0s
12350K .......... .......... .......... .......... .......... 27% 174M 0s
12400K .......... .......... .......... .......... .......... 27% 467M 0s
12450K .......... .......... .......... .......... .......... 27% 215M 0s
12500K .......... .......... .......... .......... .......... 27% 407M 0s
12550K .......... .......... .......... .......... .......... 27% 475M 0s
12600K .......... .......... .......... .......... .......... 27% 460M 0s
12650K .......... .......... .......... .......... .......... 27% 213M 0s
12700K .......... .......... .......... .......... .......... 27% 444M 0s
12750K .......... .......... .......... .......... .......... 27% 343M 0s
12800K .......... .......... .......... .......... .......... 28% 196M 0s
12850K .......... .......... .......... .......... .......... 28% 446M 0s
12900K .......... .......... .......... .......... .......... 28% 476M 0s
12950K .......... .......... .......... .......... .......... 28% 222M 0s
13000K .......... .......... .......... .......... .......... 28% 434M 0s
13050K .......... .......... .......... .......... .......... 28% 461M 0s
13100K .......... .......... .......... .......... .......... 28% 220M 0s
13150K .......... .......... .......... .......... .......... 28% 298M 0s
13200K .......... .......... .......... .......... .......... 28% 452M 0s
13250K .......... .......... .......... .......... .......... 29% 488M 0s
13300K .......... .......... .......... .......... .......... 29% 201M 0s
13350K .......... .......... .......... .......... .......... 29% 467M 0s
13400K .......... .......... .......... .......... .......... 29% 476M 0s
13450K .......... .......... .......... .......... .......... 29% 190M 0s
13500K .......... .......... .......... .......... .......... 29% 449M 0s
13550K .......... .......... .......... .......... .......... 29% 193M 0s
13600K .......... .......... .......... .......... .......... 29% 420M 0s
13650K .......... .......... .......... .......... .......... 29% 477M 0s
13700K .......... .......... .......... .......... .......... 30% 459M 0s
13750K .......... .......... .......... .......... .......... 30% 217M 0s
13800K .......... .......... .......... .......... .......... 30% 403M 0s
13850K .......... .......... .......... .......... .......... 30% 451M 0s
13900K .......... .......... .......... .......... .......... 30% 212M 0s
13950K .......... .......... .......... .......... .......... 30% 349M 0s
14000K .......... .......... .......... .......... .......... 30% 484M 0s
14050K .......... .......... .......... .......... .......... 30% 167M 0s
14100K .......... .......... .......... .......... .......... 30% 388M 0s
14150K .......... .......... .......... .......... .......... 31% 475M 0s
14200K .......... .......... .......... .......... .......... 31% 465M 0s
14250K .......... .......... .......... .......... .......... 31% 482M 0s
14300K .......... .......... .......... .......... .......... 31% 209M 0s
14350K .......... .......... .......... .......... .......... 31% 353M 0s
14400K .......... .......... .......... .......... .......... 31% 472M 0s
14450K .......... .......... .......... .......... .......... 31% 200M 0s
14500K .......... .......... .......... .......... .......... 31% 479M 0s
14550K .......... .......... .......... .......... .......... 31% 464M 0s
14600K .......... .......... .......... .......... .......... 32% 214M 0s
14650K .......... .......... .......... .......... .......... 32% 468M 0s
14700K .......... .......... .......... .......... .......... 32% 460M 0s
14750K .......... .......... .......... .......... .......... 32% 180M 0s
14800K .......... .......... .......... .......... .......... 32% 449M 0s
14850K .......... .......... .......... .......... .......... 32% 462M 0s
14900K .......... .......... .......... .......... .......... 32% 212M 0s
14950K .......... .......... .......... .......... .......... 32% 457M 0s
15000K .......... .......... .......... .......... .......... 32% 482M 0s
15050K .......... .......... .......... .......... .......... 33% 177M 0s
15100K .......... .......... .......... .......... .......... 33% 390M 0s
15150K .......... .......... .......... .......... .......... 33% 359M 0s
15200K .......... .......... .......... .......... .......... 33% 460M 0s
15250K .......... .......... .......... .......... .......... 33% 486M 0s
15300K .......... .......... .......... .......... .......... 33% 209M 0s
15350K .......... .......... .......... .......... .......... 33% 412M 0s
15400K .......... .......... .......... .......... .......... 33% 449M 0s
15450K .......... .......... .......... .......... .......... 33% 200M 0s
15500K .......... .......... .......... .......... .......... 34% 468M 0s
15550K .......... .......... .......... .......... .......... 34% 191M 0s
15600K .......... .......... .......... .......... .......... 34% 422M 0s
15650K .......... .......... .......... .......... .......... 34% 472M 0s
15700K .......... .......... .......... .......... .......... 34% 468M 0s
15750K .......... .......... .......... .......... .......... 34% 190M 0s
15800K .......... .......... .......... .......... .......... 34% 458M 0s
15850K .......... .......... .......... .......... .......... 34% 458M 0s
15900K .......... .......... .......... .......... .......... 34% 217M 0s
15950K .......... .......... .......... .......... .......... 34% 349M 0s
16000K .......... .......... .......... .......... .......... 35% 480M 0s
16050K .......... .......... .......... .......... .......... 35% 207M 0s
16100K .......... .......... .......... .......... .......... 35% 408M 0s
16150K .......... .......... .......... .......... .......... 35% 469M 0s
16200K .......... .......... .......... .......... .......... 35% 214M 0s
16250K .......... .......... .......... .......... .......... 35% 470M 0s
16300K .......... .......... .......... .......... .......... 35% 458M 0s
16350K .......... .......... .......... .......... .......... 35% 181M 0s
16400K .......... .......... .......... .......... .......... 35% 410M 0s
16450K .......... .......... .......... .......... .......... 36% 451M 0s
16500K .......... .......... .......... .......... .......... 36% 212M 0s
16550K .......... .......... .......... .......... .......... 36% 435M 0s
16600K .......... .......... .......... .......... .......... 36% 484M 0s
16650K .......... .......... .......... .......... .......... 36% 218M 0s
16700K .......... .......... .......... .......... .......... 36% 451M 0s
16750K .......... .......... .......... .......... .......... 36% 329M 0s
16800K .......... .......... .......... .......... .......... 36% 448M 0s
16850K .......... .......... .......... .......... .......... 36% 210M 0s
16900K .......... .......... .......... .......... .......... 37% 467M 0s
16950K .......... .......... .......... .......... .......... 37% 440M 0s
17000K .......... .......... .......... .......... .......... 37% 214M 0s
17050K .......... .......... .......... .......... .......... 37% 433M 0s
17100K .......... .......... .......... .......... .......... 37% 417M 0s
17150K .......... .......... .......... .......... .......... 37% 188M 0s
17200K .......... .......... .......... .......... .......... 37% 453M 0s
17250K .......... .......... .......... .......... .......... 37% 475M 0s
17300K .......... .......... .......... .......... .......... 37% 213M 0s
17350K .......... .......... .......... .......... .......... 38% 469M 0s
17400K .......... .......... .......... .......... .......... 38% 473M 0s
17450K .......... .......... .......... .......... .......... 38% 198M 0s
17500K .......... .......... .......... .......... .......... 38% 460M 0s
17550K .......... .......... .......... .......... .......... 38% 348M 0s
17600K .......... .......... .......... .......... .......... 38% 471M 0s
17650K .......... .......... .......... .......... .......... 38% 216M 0s
17700K .......... .......... .......... .......... .......... 38% 465M 0s
17750K .......... .......... .......... .......... .......... 38% 424M 0s
17800K .......... .......... .......... .......... .......... 39% 202M 0s
17850K .......... .......... .......... .......... .......... 39% 481M 0s
17900K .......... .......... .......... .......... .......... 39% 482M 0s
17950K .......... .......... .......... .......... .......... 39% 182M 0s
18000K .......... .......... .......... .......... .......... 39% 483M 0s
18050K .......... .......... .......... .......... .......... 39% 447M 0s
18100K .......... .......... .......... .......... .......... 39% 205M 0s
18150K .......... .......... .......... .......... .......... 39% 259M 0s
18200K .......... .......... .......... .......... .......... 39% 368M 0s
18250K .......... .......... .......... .......... .......... 40% 477M 0s
18300K .......... .......... .......... .......... .......... 40% 266M 0s
18350K .......... .......... .......... .......... .......... 40% 350M 0s
18400K .......... .......... .......... .......... .......... 40% 231M 0s
18450K .......... .......... .......... .......... .......... 40% 453M 0s
18500K .......... .......... .......... .......... .......... 40% 250M 0s
18550K .......... .......... .......... .......... .......... 40% 441M 0s
18600K .......... .......... .......... .......... .......... 40% 479M 0s
18650K .......... .......... .......... .......... .......... 40% 251M 0s
18700K .......... .......... .......... .......... .......... 40% 462M 0s
18750K .......... .......... .......... .......... .......... 41% 193M 0s
18800K .......... .......... .......... .......... .......... 41% 439M 0s
18850K .......... .......... .......... .......... .......... 41% 473M 0s
18900K .......... .......... .......... .......... .......... 41% 219M 0s
18950K .......... .......... .......... .......... .......... 41% 452M 0s
19000K .......... .......... .......... .......... .......... 41% 469M 0s
19050K .......... .......... .......... .......... .......... 41% 220M 0s
19100K .......... .......... .......... .......... .......... 41% 463M 0s
19150K .......... .......... .......... .......... .......... 41% 353M 0s
19200K .......... .......... .......... .......... .......... 42% 210M 0s
19250K .......... .......... .......... .......... .......... 42% 446M 0s
19300K .......... .......... .......... .......... .......... 42% 458M 0s
19350K .......... .......... .......... .......... .......... 42% 238M 0s
19400K .......... .......... .......... .......... .......... 42% 417M 0s
19450K .......... .......... .......... .......... .......... 42% 342M 0s
19500K .......... .......... .......... .......... .......... 42% 363M 0s
19550K .......... .......... .......... .......... .......... 42% 347M 0s
19600K .......... .......... .......... .......... .......... 42% 263M 0s
19650K .......... .......... .......... .......... .......... 43% 462M 0s
19700K .......... .......... .......... .......... .......... 43% 484M 0s
19750K .......... .......... .......... .......... .......... 43% 197M 0s
19800K .......... .......... .......... .......... .......... 43% 346M 0s
19850K .......... .......... .......... .......... .......... 43% 467M 0s
19900K .......... .......... .......... .......... .......... 43% 489M 0s
19950K .......... .......... .......... .......... .......... 43% 229M 0s
20000K .......... .......... .......... .......... .......... 43% 467M 0s
20050K .......... .......... .......... .......... .......... 43% 458M 0s
20100K .......... .......... .......... .......... .......... 44% 197M 0s
20150K .......... .......... .......... .......... .......... 44% 465M 0s
20200K .......... .......... .......... .......... .......... 44% 480M 0s
20250K .......... .......... .......... .......... .......... 44% 216M 0s
20300K .......... .......... .......... .......... .......... 44% 449M 0s
20350K .......... .......... .......... .......... .......... 44% 357M 0s
20400K .......... .......... .......... .......... .......... 44% 199M 0s
20450K .......... .......... .......... .......... .......... 44% 467M 0s
20500K .......... .......... .......... .......... .......... 44% 232M 0s
20550K .......... .......... .......... .......... .......... 45% 301M 0s
20600K .......... .......... .......... .......... .......... 45% 334M 0s
20650K .......... .......... .......... .......... .......... 45% 436M 0s
20700K .......... .......... .......... .......... .......... 45% 471M 0s
20750K .......... .......... .......... .......... .......... 45% 175M 0s
20800K .......... .......... .......... .......... .......... 45% 455M 0s
20850K .......... .......... .......... .......... .......... 45% 463M 0s
20900K .......... .......... .......... .......... .......... 45% 464M 0s
20950K .......... .......... .......... .......... .......... 45% 216M 0s
21000K .......... .......... .......... .......... .......... 46% 302M 0s
21050K .......... .......... .......... .......... .......... 46% 407M 0s
21100K .......... .......... .......... .......... .......... 46% 466M 0s
21150K .......... .......... .......... .......... .......... 46% 185M 0s
21200K .......... .......... .......... .......... .......... 46% 473M 0s
21250K .......... .......... .......... .......... .......... 46% 476M 0s
21300K .......... .......... .......... .......... .......... 46% 231M 0s
21350K .......... .......... .......... .......... .......... 46% 463M 0s
21400K .......... .......... .......... .......... .......... 46% 231M 0s
21450K .......... .......... .......... .......... .......... 47% 463M 0s
21500K .......... .......... .......... .......... .......... 47% 253M 0s
21550K .......... .......... .......... .......... .......... 47% 251M 0s
21600K .......... .......... .......... .......... .......... 47% 312M 0s
21650K .......... .......... .......... .......... .......... 47% 300M 0s
21700K .......... .......... .......... .......... .......... 47% 350M 0s
21750K .......... .......... .......... .......... .......... 47% 314M 0s
21800K .......... .......... .......... .......... .......... 47% 311M 0s
21850K .......... .......... .......... .......... .......... 47% 321M 0s
21900K .......... .......... .......... .......... .......... 47% 319M 0s
21950K .......... .......... .......... .......... .......... 48% 295M 0s
22000K .......... .......... .......... .......... .......... 48% 345M 0s
22050K .......... .......... .......... .......... .......... 48% 315M 0s
22100K .......... .......... .......... .......... .......... 48% 309M 0s
22150K .......... .......... .......... .......... .......... 48% 311M 0s
22200K .......... .......... .......... .......... .......... 48% 321M 0s
22250K .......... .......... .......... .......... .......... 48% 454M 0s
22300K .......... .......... .......... .......... .......... 48% 297M 0s
22350K .......... .......... .......... .......... .......... 48% 227M 0s
22400K .......... .......... .......... .......... .......... 49% 458M 0s
22450K .......... .......... .......... .......... .......... 49% 262M 0s
22500K .......... .......... .......... .......... .......... 49% 310M 0s
22550K .......... .......... .......... .......... .......... 49% 468M 0s
22600K .......... .......... .......... .......... .......... 49% 295M 0s
22650K .......... .......... .......... .......... .......... 49% 271M 0s
22700K .......... .......... .......... .......... .......... 49% 443M 0s
22750K .......... .......... .......... .......... .......... 49% 210M 0s
22800K .......... .......... .......... .......... .......... 49% 464M 0s
22850K .......... .......... .......... .......... .......... 50% 250M 0s
22900K .......... .......... .......... .......... .......... 50% 309M 0s
22950K .......... .......... .......... .......... .......... 50% 315M 0s
23000K .......... .......... .......... .......... .......... 50% 286M 0s
23050K .......... .......... .......... .......... .......... 50% 328M 0s
23100K .......... .......... .......... .......... .......... 50% 365M 0s
23150K .......... .......... .......... .......... .......... 50% 260M 0s
23200K .......... .......... .......... .......... .......... 50% 322M 0s
23250K .......... .......... .......... .......... .......... 50% 446M 0s
23300K .......... .......... .......... .......... .......... 51% 278M 0s
23350K .......... .......... .......... .......... .......... 51% 296M 0s
23400K .......... .......... .......... .......... .......... 51% 299M 0s
23450K .......... .......... .......... .......... .......... 51% 469M 0s
23500K .......... .......... .......... .......... .......... 51% 287M 0s
23550K .......... .......... .......... .......... .......... 51% 242M 0s
23600K .......... .......... .......... .......... .......... 51% 261M 0s
23650K .......... .......... .......... .......... .......... 51% 297M 0s
23700K .......... .......... .......... .......... .......... 51% 360M 0s
23750K .......... .......... .......... .......... .......... 52% 318M 0s
23800K .......... .......... .......... .......... .......... 52% 315M 0s
23850K .......... .......... .......... .......... .......... 52% 317M 0s
23900K .......... .......... .......... .......... .......... 52% 435M 0s
23950K .......... .......... .......... .......... .......... 52% 243M 0s
24000K .......... .......... .......... .......... .......... 52% 304M 0s
24050K .......... .......... .......... .......... .......... 52% 296M 0s
24100K .......... .......... .......... .......... .......... 52% 295M 0s
24150K .......... .......... .......... .......... .......... 52% 455M 0s
24200K .......... .......... .......... .......... .......... 53% 224M 0s
24250K .......... .......... .......... .......... .......... 53% 386M 0s
24300K .......... .......... .......... .......... .......... 53% 469M 0s
24350K .......... .......... .......... .......... .......... 53% 214M 0s
24400K .......... .......... .......... .......... .......... 53% 231M 0s
24450K .......... .......... .......... .......... .......... 53% 465M 0s
24500K .......... .......... .......... .......... .......... 53% 453M 0s
24550K .......... .......... .......... .......... .......... 53% 470M 0s
24600K .......... .......... .......... .......... .......... 53% 217M 0s
24650K .......... .......... .......... .......... .......... 54% 440M 0s
24700K .......... .......... .......... .......... .......... 54% 250M 0s
24750K .......... .......... .......... .......... .......... 54% 333M 0s
24800K .......... .......... .......... .......... .......... 54% 259M 0s
24850K .......... .......... .......... .......... .......... 54% 427M 0s
24900K .......... .......... .......... .......... .......... 54% 408M 0s
24950K .......... .......... .......... .......... .......... 54% 459M 0s
25000K .......... .......... .......... .......... .......... 54% 218M 0s
25050K .......... .......... .......... .......... .......... 54% 434M 0s
25100K .......... .......... .......... .......... .......... 54% 472M 0s
25150K .......... .......... .......... .......... .......... 55% 198M 0s
25200K .......... .......... .......... .......... .......... 55% 319M 0s
25250K .......... .......... .......... .......... .......... 55% 402M 0s
25300K .......... .......... .......... .......... .......... 55% 252M 0s
25350K .......... .......... .......... .......... .......... 55% 473M 0s
25400K .......... .......... .......... .......... .......... 55% 277M 0s
25450K .......... .......... .......... .......... .......... 55% 277M 0s
25500K .......... .......... .......... .......... .......... 55% 305M 0s
25550K .......... .......... .......... .......... .......... 55% 240M 0s
25600K .......... .......... .......... .......... .......... 56% 355M 0s
25650K .......... .......... .......... .......... .......... 56% 339M 0s
25700K .......... .......... .......... .......... .......... 56% 459M 0s
25750K .......... .......... .......... .......... .......... 56% 313M 0s
25800K .......... .......... .......... .......... .......... 56% 293M 0s
25850K .......... .......... .......... .......... .......... 56% 319M 0s
25900K .......... .......... .......... .......... .......... 56% 280M 0s
25950K .......... .......... .......... .......... .......... 56% 262M 0s
26000K .......... .......... .......... .......... .......... 56% 309M 0s
26050K .......... .......... .......... .......... .......... 57% 315M 0s
26100K .......... .......... .......... .......... .......... 57% 312M 0s
26150K .......... .......... .......... .......... .......... 57% 448M 0s
26200K .......... .......... .......... .......... .......... 57% 248M 0s
26250K .......... .......... .......... .......... .......... 57% 320M 0s
26300K .......... .......... .......... .......... .......... 57% 282M 0s
26350K .......... .......... .......... .......... .......... 57% 338M 0s
26400K .......... .......... .......... .......... .......... 57% 458M 0s
26450K .......... .......... .......... .......... .......... 57% 457M 0s
26500K .......... .......... .......... .......... .......... 58% 181M 0s
26550K .......... .......... .......... .......... .......... 58% 287M 0s
26600K .......... .......... .......... .......... .......... 58% 386M 0s
26650K .......... .......... .......... .......... .......... 58% 318M 0s
26700K .......... .......... .......... .......... .......... 58% 322M 0s
26750K .......... .......... .......... .......... .......... 58% 258M 0s
26800K .......... .......... .......... .......... .......... 58% 248M 0s
26850K .......... .......... .......... .......... .......... 58% 299M 0s
26900K .......... .......... .......... .......... .......... 58% 299M 0s
26950K .......... .......... .......... .......... .......... 59% 463M 0s
27000K .......... .......... .......... .......... .......... 59% 278M 0s
27050K .......... .......... .......... .......... .......... 59% 323M 0s
27100K .......... .......... .......... .......... .......... 59% 429M 0s
27150K .......... .......... .......... .......... .......... 59% 253M 0s
27200K .......... .......... .......... .......... .......... 59% 338M 0s
27250K .......... .......... .......... .......... .......... 59% 439M 0s
27300K .......... .......... .......... .......... .......... 59% 282M 0s
27350K .......... .......... .......... .......... .......... 59% 322M 0s
27400K .......... .......... .......... .......... .......... 60% 397M 0s
27450K .......... .......... .......... .......... .......... 60% 351M 0s
27500K .......... .......... .......... .......... .......... 60% 396M 0s
27550K .......... .......... .......... .......... .......... 60% 233M 0s
27600K .......... .......... .......... .......... .......... 60% 462M 0s
27650K .......... .......... .......... .......... .......... 60% 250M 0s
27700K .......... .......... .......... .......... .......... 60% 470M 0s
27750K .......... .......... .......... .......... .......... 60% 462M 0s
27800K .......... .......... .......... .......... .......... 60% 232M 0s
27850K .......... .......... .......... .......... .......... 61% 439M 0s
27900K .......... .......... .......... .......... .......... 61% 230M 0s
27950K .......... .......... .......... .......... .......... 61% 242M 0s
28000K .......... .......... .......... .......... .......... 61% 466M 0s
28050K .......... .......... .......... .......... .......... 61% 262M 0s
28100K .......... .......... .......... .......... .......... 61% 278M 0s
28150K .......... .......... .......... .......... .......... 61% 446M 0s
28200K .......... .......... .......... .......... .......... 61% 475M 0s
28250K .......... .......... .......... .......... .......... 61% 247M 0s
28300K .......... .......... .......... .......... .......... 61% 302M 0s
28350K .......... .......... .......... .......... .......... 62% 342M 0s
28400K .......... .......... .......... .......... .......... 62% 246M 0s
28450K .......... .......... .......... .......... .......... 62% 388M 0s
28500K .......... .......... .......... .......... .......... 62% 253M 0s
28550K .......... .......... .......... .......... .......... 62% 298M 0s
28600K .......... .......... .......... .......... .......... 62% 305M 0s
28650K .......... .......... .......... .......... .......... 62% 302M 0s
28700K .......... .......... .......... .......... .......... 62% 456M 0s
28750K .......... .......... .......... .......... .......... 62% 347M 0s
28800K .......... .......... .......... .......... .......... 63% 189M 0s
28850K .......... .......... .......... .......... .......... 63% 314M 0s
28900K .......... .......... .......... .......... .......... 63% 291M 0s
28950K .......... .......... .......... .......... .......... 63% 291M 0s
29000K .......... .......... .......... .......... .......... 63% 457M 0s
29050K .......... .......... .......... .......... .......... 63% 323M 0s
29100K .......... .......... .......... .......... .......... 63% 282M 0s
29150K .......... .......... .......... .......... .......... 63% 247M 0s
29200K .......... .......... .......... .......... .......... 63% 314M 0s
29250K .......... .......... .......... .......... .......... 64% 351M 0s
29300K .......... .......... .......... .......... .......... 64% 301M 0s
29350K .......... .......... .......... .......... .......... 64% 446M 0s
29400K .......... .......... .......... .......... .......... 64% 412M 0s
29450K .......... .......... .......... .......... .......... 64% 232M 0s
29500K .......... .......... .......... .......... .......... 64% 284M 0s
29550K .......... .......... .......... .......... .......... 64% 352M 0s
29600K .......... .......... .......... .......... .......... 64% 470M 0s
29650K .......... .......... .......... .......... .......... 64% 252M 0s
29700K .......... .......... .......... .......... .......... 65% 438M 0s
29750K .......... .......... .......... .......... .......... 65% 407M 0s
29800K .......... .......... .......... .......... .......... 65% 250M 0s
29850K .......... .......... .......... .......... .......... 65% 314M 0s
29900K .......... .......... .......... .......... .......... 65% 296M 0s
29950K .......... .......... .......... .......... .......... 65% 341M 0s
30000K .......... .......... .......... .......... .......... 65% 267M 0s
30050K .......... .......... .......... .......... .......... 65% 292M 0s
30100K .......... .......... .......... .......... .......... 65% 295M 0s
30150K .......... .......... .......... .......... .......... 66% 318M 0s
30200K .......... .......... .......... .......... .......... 66% 441M 0s
30250K .......... .......... .......... .......... .......... 66% 317M 0s
30300K .......... .......... .......... .......... .......... 66% 325M 0s
30350K .......... .......... .......... .......... .......... 66% 232M 0s
30400K .......... .......... .......... .......... .......... 66% 461M 0s
30450K .......... .......... .......... .......... .......... 66% 434M 0s
30500K .......... .......... .......... .......... .......... 66% 478M 0s
30550K .......... .......... .......... .......... .......... 66% 484M 0s
30600K .......... .......... .......... .......... .......... 67% 465M 0s
30650K .......... .......... .......... .......... .......... 67% 378M 0s
30700K .......... .......... .......... .......... .......... 67% 319M 0s
30750K .......... .......... .......... .......... .......... 67% 239M 0s
30800K .......... .......... .......... .......... .......... 67% 456M 0s
30850K .......... .......... .......... .......... .......... 67% 253M 0s
30900K .......... .......... .......... .......... .......... 67% 450M 0s
30950K .......... .......... .......... .......... .......... 67% 466M 0s
31000K .......... .......... .......... .......... .......... 67% 249M 0s
31050K .......... .......... .......... .......... .......... 68% 477M 0s
31100K .......... .......... .......... .......... .......... 68% 449M 0s
31150K .......... .......... .......... .......... .......... 68% 197M 0s
31200K .......... .......... .......... .......... .......... 68% 454M 0s
31250K .......... .......... .......... .......... .......... 68% 240M 0s
31300K .......... .......... .......... .......... .......... 68% 486M 0s
31350K .......... .......... .......... .......... .......... 68% 260M 0s
31400K .......... .......... .......... .......... .......... 68% 408M 0s
31450K .......... .......... .......... .......... .......... 68% 316M 0s
31500K .......... .......... .......... .......... .......... 68% 402M 0s
31550K .......... .......... .......... .......... .......... 69% 252M 0s
31600K .......... .......... .......... .......... .......... 69% 470M 0s
31650K .......... .......... .......... .......... .......... 69% 277M 0s
31700K .......... .......... .......... .......... .......... 69% 440M 0s
31750K .......... .......... .......... .......... .......... 69% 475M 0s
31800K .......... .......... .......... .......... .......... 69% 208M 0s
31850K .......... .......... .......... .......... .......... 69% 428M 0s
31900K .......... .......... .......... .......... .......... 69% 481M 0s
31950K .......... .......... .......... .......... .......... 69% 344M 0s
32000K .......... .......... .......... .......... .......... 70% 216M 0s
32050K .......... .......... .......... .......... .......... 70% 465M 0s
32100K .......... .......... .......... .......... .......... 70% 214M 0s
32150K .......... .......... .......... .......... .......... 70% 415M 0s
32200K .......... .......... .......... .......... .......... 70% 453M 0s
32250K .......... .......... .......... .......... .......... 70% 483M 0s
32300K .......... .......... .......... .......... .......... 70% 230M 0s
32350K .......... .......... .......... .......... .......... 70% 328M 0s
32400K .......... .......... .......... .......... .......... 70% 247M 0s
32450K .......... .......... .......... .......... .......... 71% 360M 0s
32500K .......... .......... .......... .......... .......... 71% 252M 0s
32550K .......... .......... .......... .......... .......... 71% 312M 0s
32600K .......... .......... .......... .......... .......... 71% 408M 0s
32650K .......... .......... .......... .......... .......... 71% 384M 0s
32700K .......... .......... .......... .......... .......... 71% 318M 0s
32750K .......... .......... .......... .......... .......... 71% 228M 0s
32800K .......... .......... .......... .......... .......... 71% 459M 0s
32850K .......... .......... .......... .......... .......... 71% 262M 0s
32900K .......... .......... .......... .......... .......... 72% 469M 0s
32950K .......... .......... .......... .......... .......... 72% 449M 0s
33000K .......... .......... .......... .......... .......... 72% 248M 0s
33050K .......... .......... .......... .......... .......... 72% 459M 0s
33100K .......... .......... .......... .......... .......... 72% 465M 0s
33150K .......... .......... .......... .......... .......... 72% 181M 0s
33200K .......... .......... .......... .......... .......... 72% 441M 0s
33250K .......... .......... .......... .......... .......... 72% 467M 0s
33300K .......... .......... .......... .......... .......... 72% 245M 0s
33350K .......... .......... .......... .......... .......... 73% 479M 0s
33400K .......... .......... .......... .......... .......... 73% 471M 0s
33450K .......... .......... .......... .......... .......... 73% 191M 0s
33500K .......... .......... .......... .......... .......... 73% 406M 0s
33550K .......... .......... .......... .......... .......... 73% 310M 0s
33600K .......... .......... .......... .......... .......... 73% 333M 0s
33650K .......... .......... .......... .......... .......... 73% 294M 0s
33700K .......... .......... .......... .......... .......... 73% 411M 0s
33750K .......... .......... .......... .......... .......... 73% 483M 0s
33800K .......... .......... .......... .......... .......... 74% 234M 0s
33850K .......... .......... .......... .......... .......... 74% 471M 0s
33900K .......... .......... .......... .......... .......... 74% 252M 0s
33950K .......... .......... .......... .......... .......... 74% 348M 0s
34000K .......... .......... .......... .......... .......... 74% 255M 0s
34050K .......... .......... .......... .......... .......... 74% 463M 0s
34100K .......... .......... .......... .......... .......... 74% 238M 0s
34150K .......... .......... .......... .......... .......... 74% 471M 0s
34200K .......... .......... .......... .......... .......... 74% 244M 0s
34250K .......... .......... .......... .......... .......... 75% 482M 0s
34300K .......... .......... .......... .......... .......... 75% 464M 0s
34350K .......... .......... .......... .......... .......... 75% 202M 0s
34400K .......... .......... .......... .......... .......... 75% 461M 0s
34450K .......... .......... .......... .......... .......... 75% 408M 0s
34500K .......... .......... .......... .......... .......... 75% 217M 0s
34550K .......... .......... .......... .......... .......... 75% 204M 0s
34600K .......... .......... .......... .......... .......... 75% 482M 0s
34650K .......... .......... .......... .......... .......... 75% 306M 0s
34700K .......... .......... .......... .......... .......... 75% 303M 0s
34750K .......... .......... .......... .......... .......... 76% 312M 0s
34800K .......... .......... .......... .......... .......... 76% 245M 0s
34850K .......... .......... .......... .......... .......... 76% 368M 0s
34900K .......... .......... .......... .......... .......... 76% 329M 0s
34950K .......... .......... .......... .......... .......... 76% 450M 0s
35000K .......... .......... .......... .......... .......... 76% 470M 0s
35050K .......... .......... .......... .......... .......... 76% 261M 0s
35100K .......... .......... .......... .......... .......... 76% 406M 0s
35150K .......... .......... .......... .......... .......... 76% 209M 0s
35200K .......... .......... .......... .......... .......... 77% 314M 0s
35250K .......... .......... .......... .......... .......... 77% 469M 0s
35300K .......... .......... .......... .......... .......... 77% 251M 0s
35350K .......... .......... .......... .......... .......... 77% 461M 0s
35400K .......... .......... .......... .......... .......... 77% 462M 0s
35450K .......... .......... .......... .......... .......... 77% 219M 0s
35500K .......... .......... .......... .......... .......... 77% 482M 0s
35550K .......... .......... .......... .......... .......... 77% 192M 0s
35600K .......... .......... .......... .......... .......... 77% 431M 0s
35650K .......... .......... .......... .......... .......... 78% 461M 0s
35700K .......... .......... .......... .......... .......... 78% 224M 0s
35750K .......... .......... .......... .......... .......... 78% 437M 0s
35800K .......... .......... .......... .......... .......... 78% 225M 0s
35850K .......... .......... .......... .......... .......... 78% 452M 0s
35900K .......... .......... .......... .......... .......... 78% 450M 0s
35950K .......... .......... .......... .......... .......... 78% 189M 0s
36000K .......... .......... .......... .......... .......... 78% 464M 0s
36050K .......... .......... .......... .......... .......... 78% 402M 0s
36100K .......... .......... .......... .......... .......... 79% 201M 0s
36150K .......... .......... .......... .......... .......... 79% 393M 0s
36200K .......... .......... .......... .......... .......... 79% 360M 0s
36250K .......... .......... .......... .......... .......... 79% 334M 0s
36300K .......... .......... .......... .......... .......... 79% 296M 0s
36350K .......... .......... .......... .......... .......... 79% 352M 0s
36400K .......... .......... .......... .......... .......... 79% 239M 0s
36450K .......... .......... .......... .......... .......... 79% 458M 0s
36500K .......... .......... .......... .......... .......... 79% 260M 0s
36550K .......... .......... .......... .......... .......... 80% 416M 0s
36600K .......... .......... .......... .......... .......... 80% 469M 0s
36650K .......... .......... .......... .......... .......... 80% 199M 0s
36700K .......... .......... .......... .......... .......... 80% 328M 0s
36750K .......... .......... .......... .......... .......... 80% 313M 0s
36800K .......... .......... .......... .......... .......... 80% 321M 0s
36850K .......... .......... .......... .......... .......... 80% 314M 0s
36900K .......... .......... .......... .......... .......... 80% 299M 0s
36950K .......... .......... .......... .......... .......... 80% 312M 0s
37000K .......... .......... .......... .......... .......... 81% 466M 0s
37050K .......... .......... .......... .......... .......... 81% 231M 0s
37100K .......... .......... .......... .......... .......... 81% 322M 0s
37150K .......... .......... .......... .......... .......... 81% 338M 0s
37200K .......... .......... .......... .......... .......... 81% 431M 0s
37250K .......... .......... .......... .......... .......... 81% 328M 0s
37300K .......... .......... .......... .......... .......... 81% 430M 0s
37350K .......... .......... .......... .......... .......... 81% 239M 0s
37400K .......... .......... .......... .......... .......... 81% 326M 0s
37450K .......... .......... .......... .......... .......... 81% 456M 0s
37500K .......... .......... .......... .......... .......... 82% 296M 0s
37550K .......... .......... .......... .......... .......... 82% 349M 0s
37600K .......... .......... .......... .......... .......... 82% 253M 0s
37650K .......... .......... .......... .......... .......... 82% 456M 0s
37700K .......... .......... .......... .......... .......... 82% 226M 0s
37750K .......... .......... .......... .......... .......... 82% 462M 0s
37800K .......... .......... .......... .......... .......... 82% 465M 0s
37850K .......... .......... .......... .......... .......... 82% 480M 0s
37900K .......... .......... .......... .......... .......... 82% 181M 0s
37950K .......... .......... .......... .......... .......... 83% 349M 0s
38000K .......... .......... .......... .......... .......... 83% 255M 0s
38050K .......... .......... .......... .......... .......... 83% 442M 0s
38100K .......... .......... .......... .......... .......... 83% 286M 0s
38150K .......... .......... .......... .......... .......... 83% 278M 0s
38200K .......... .......... .......... .......... .......... 83% 324M 0s
38250K .......... .......... .......... .......... .......... 83% 411M 0s
38300K .......... .......... .......... .......... .......... 83% 234M 0s
38350K .......... .......... .......... .......... .......... 83% 251M 0s
38400K .......... .......... .......... .......... .......... 84% 415M 0s
38450K .......... .......... .......... .......... .......... 84% 475M 0s
38500K .......... .......... .......... .......... .......... 84% 255M 0s
38550K .......... .......... .......... .......... .......... 84% 300M 0s
38600K .......... .......... .......... .......... .......... 84% 297M 0s
38650K .......... .......... .......... .......... .......... 84% 275M 0s
38700K .......... .......... .......... .......... .......... 84% 434M 0s
38750K .......... .......... .......... .......... .......... 84% 346M 0s
38800K .......... .......... .......... .......... .......... 84% 265M 0s
38850K .......... .......... .......... .......... .......... 85% 258M 0s
38900K .......... .......... .......... .......... .......... 85% 317M 0s
38950K .......... .......... .......... .......... .......... 85% 259M 0s
39000K .......... .......... .......... .......... .......... 85% 415M 0s
39050K .......... .......... .......... .......... .......... 85% 465M 0s
39100K .......... .......... .......... .......... .......... 85% 248M 0s
39150K .......... .......... .......... .......... .......... 85% 150M 0s
39200K .......... .......... .......... .......... .......... 85% 222M 0s
39250K .......... .......... .......... .......... .......... 85% 324M 0s
39300K .......... .......... .......... .......... .......... 86% 398M 0s
39350K .......... .......... .......... .......... .......... 86% 314M 0s
39400K .......... .......... .......... .......... .......... 86% 310M 0s
39450K .......... .......... .......... .......... .......... 86% 476M 0s
39500K .......... .......... .......... .......... .......... 86% 240M 0s
39550K .......... .......... .......... .......... .......... 86% 235M 0s
39600K .......... .......... .......... .......... .......... 86% 322M 0s
39650K .......... .......... .......... .......... .......... 86% 419M 0s
39700K .......... .......... .......... .......... .......... 86% 482M 0s
39750K .......... .......... .......... .......... .......... 87% 245M 0s
39800K .......... .......... .......... .......... .......... 87% 304M 0s
39850K .......... .......... .......... .......... .......... 87% 460M 0s
39900K .......... .......... .......... .......... .......... 87% 229M 0s
39950K .......... .......... .......... .......... .......... 87% 229M 0s
40000K .......... .......... .......... .......... .......... 87% 321M 0s
40050K .......... .......... .......... .......... .......... 87% 443M 0s
40100K .......... .......... .......... .......... .......... 87% 461M 0s
40150K .......... .......... .......... .......... .......... 87% 294M 0s
40200K .......... .......... .......... .......... .......... 88% 415M 0s
40250K .......... .......... .......... .......... .......... 88% 438M 0s
40300K .......... .......... .......... .......... .......... 88% 465M 0s
40350K .......... .......... .......... .......... .......... 88% 341M 0s
40400K .......... .......... .......... .......... .......... 88% 460M 0s
40450K .......... .......... .......... .......... .......... 88% 216M 0s
40500K .......... .......... .......... .......... .......... 88% 407M 0s
40550K .......... .......... .......... .......... .......... 88% 469M 0s
40600K .......... .......... .......... .......... .......... 88% 406M 0s
40650K .......... .......... .......... .......... .......... 88% 455M 0s
40700K .......... .......... .......... .......... .......... 89% 474M 0s
40750K .......... .......... .......... .......... .......... 89% 201M 0s
40800K .......... .......... .......... .......... .......... 89% 473M 0s
40850K .......... .......... .......... .......... .......... 89% 461M 0s
40900K .......... .......... .......... .......... .......... 89% 468M 0s
40950K .......... .......... .......... .......... .......... 89% 201M 0s
41000K .......... .......... .......... .......... .......... 89% 445M 0s
41050K .......... .......... .......... .......... .......... 89% 466M 0s
41100K .......... .......... .......... .......... .......... 89% 218M 0s
41150K .......... .......... .......... .......... .......... 90% 340M 0s
41200K .......... .......... .......... .......... .......... 90% 450M 0s
41250K .......... .......... .......... .......... .......... 90% 441M 0s
41300K .......... .......... .......... .......... .......... 90% 198M 0s
41350K .......... .......... .......... .......... .......... 90% 445M 0s
41400K .......... .......... .......... .......... .......... 90% 477M 0s
41450K .......... .......... .......... .......... .......... 90% 226M 0s
41500K .......... .......... .......... .......... .......... 90% 408M 0s
41550K .......... .......... .......... .......... .......... 90% 349M 0s
41600K .......... .......... .......... .......... .......... 91% 203M 0s
41650K .......... .......... .......... .......... .......... 91% 438M 0s
41700K .......... .......... .......... .......... .......... 91% 471M 0s
41750K .......... .......... .......... .......... .......... 91% 451M 0s
41800K .......... .......... .......... .......... .......... 91% 215M 0s
41850K .......... .......... .......... .......... .......... 91% 451M 0s
41900K .......... .......... .......... .......... .......... 91% 484M 0s
41950K .......... .......... .......... .......... .......... 91% 187M 0s
42000K .......... .......... .......... .......... .......... 91% 393M 0s
42050K .......... .......... .......... .......... .......... 92% 473M 0s
42100K .......... .......... .......... .......... .......... 92% 223M 0s
42150K .......... .......... .......... .......... .......... 92% 429M 0s
42200K .......... .......... .......... .......... .......... 92% 480M 0s
42250K .......... .......... .......... .......... .......... 92% 442M 0s
42300K .......... .......... .......... .......... .......... 92% 187M 0s
42350K .......... .......... .......... .......... .......... 92% 350M 0s
42400K .......... .......... .......... .......... .......... 92% 233M 0s
42450K .......... .......... .......... .......... .......... 92% 457M 0s
42500K .......... .......... .......... .......... .......... 93% 309M 0s
42550K .......... .......... .......... .......... .......... 93% 472M 0s
42600K .......... .......... .......... .......... .......... 93% 231M 0s
42650K .......... .......... .......... .......... .......... 93% 312M 0s
42700K .......... .......... .......... .......... .......... 93% 322M 0s
42750K .......... .......... .......... .......... .......... 93% 330M 0s
42800K .......... .......... .......... .......... .......... 93% 476M 0s
42850K .......... .......... .......... .......... .......... 93% 250M 0s
42900K .......... .......... .......... .......... .......... 93% 455M 0s
42950K .......... .......... .......... .......... .......... 94% 238M 0s
43000K .......... .......... .......... .......... .......... 94% 439M 0s
43050K .......... .......... .......... .......... .......... 94% 321M 0s
43100K .......... .......... .......... .......... .......... 94% 313M 0s
43150K .......... .......... .......... .......... .......... 94% 348M 0s
43200K .......... .......... .......... .......... .......... 94% 488M 0s
43250K .......... .......... .......... .......... .......... 94% 438M 0s
43300K .......... .......... .......... .......... .......... 94% 424M 0s
43350K .......... .......... .......... .......... .......... 94% 444M 0s
43400K .......... .......... .......... .......... .......... 95% 397M 0s
43450K .......... .......... .......... .......... .......... 95% 363M 0s
43500K .......... .......... .......... .......... .......... 95% 319M 0s
43550K .......... .......... .......... .......... .......... 95% 241M 0s
43600K .......... .......... .......... .......... .......... 95% 455M 0s
43650K .......... .......... .......... .......... .......... 95% 246M 0s
43700K .......... .......... .......... .......... .......... 95% 467M 0s
43750K .......... .......... .......... .......... .......... 95% 430M 0s
43800K .......... .......... .......... .......... .......... 95% 242M 0s
43850K .......... .......... .......... .......... .......... 95% 302M 0s
43900K .......... .......... .......... .......... .......... 96% 479M 0s
43950K .......... .......... .......... .......... .......... 96% 350M 0s
44000K .......... .......... .......... .......... .......... 96% 230M 0s
44050K .......... .......... .......... .......... .......... 96% 248M 0s
44100K .......... .......... .......... .......... .......... 96% 426M 0s
44150K .......... .......... .......... .......... .......... 96% 475M 0s
44200K .......... .......... .......... .......... .......... 96% 482M 0s
44250K .......... .......... .......... .......... .......... 96% 221M 0s
44300K .......... .......... .......... .......... .......... 96% 428M 0s
44350K .......... .......... .......... .......... .......... 97% 313M 0s
44400K .......... .......... .......... .......... .......... 97% 472M 0s
44450K .......... .......... .......... .......... .......... 97% 213M 0s
44500K .......... .......... .......... .......... .......... 97% 463M 0s
44550K .......... .......... .......... .......... .......... 97% 446M 0s
44600K .......... .......... .......... .......... .......... 97% 211M 0s
44650K .......... .......... .......... .......... .......... 97% 466M 0s
44700K .......... .......... .......... .......... .......... 97% 415M 0s
44750K .......... .......... .......... .......... .......... 97% 193M 0s
44800K .......... .......... .......... .......... .......... 98% 463M 0s
44850K .......... .......... .......... .......... .......... 98% 461M 0s
44900K .......... .......... .......... .......... .......... 98% 483M 0s
44950K .......... .......... .......... .......... .......... 98% 445M 0s
45000K .......... .......... .......... .......... .......... 98% 479M 0s
45050K .......... .......... .......... .......... .......... 98% 466M 0s
45100K .......... .......... .......... .......... .......... 98% 404M 0s
45150K .......... .......... .......... .......... .......... 98% 352M 0s
45200K .......... .......... .......... .......... .......... 98% 466M 0s
45250K .......... .......... .......... .......... .......... 99% 474M 0s
45300K .......... .......... .......... .......... .......... 99% 464M 0s
45350K .......... .......... .......... .......... .......... 99% 459M 0s
45400K .......... .......... .......... .......... .......... 99% 480M 0s
45450K .......... .......... .......... .......... .......... 99% 460M 0s
45500K .......... .......... .......... .......... .......... 99% 478M 0s
45550K .......... .......... .......... .......... .......... 99% 320M 0s
45600K .......... .......... .......... .......... .......... 99% 462M 0s
45650K .......... .......... .......... .......... .......... 99% 486M 0s
45700K .......... .......... .......... .. 100% 482M=0.2s
2025-07-01 13:28:49 (240 MB/s) - ‘resnet18-f37072fd.pth’ saved [46830571/46830571]
Hide/Show the code
<- cnn_learner(dls = dls,
learn arch = resnet18(),
path = ".",
metrics = list(accuracy, error_rate))
Now we are ready to train our model. Again, for the sake of illustration, we use only 2 epochs here, but used 20 epochs to get the full results presented in the main text. With all pictures and a resnet50, it took 75 minutes per epoch approximatively on a Mac with a 2.4Ghz processor and 64Go memory, and less than half an hour on a machine with GPU. On this reduced dataset, it took a bit more than a minute per epoch on the same Mac. Note that we save the model after each epoch for later use.
Hide/Show the code
<- learn %>%
one_cycle fit_one_cycle(2, cbs = SaveModelCallback(every_epoch = TRUE,
fname = 'model'))
epoch train_loss valid_loss accuracy error_rate time
------ ----------- ----------- --------- ----------- ------
Epoch 1/2 :
Epoch 1/2 :
Epoch 1/2 :
Epoch 1/2 :
0 2.599615 0.903939 0.739583 0.260417 00:38
Epoch 2/2 :
Epoch 2/2 :
Epoch 2/2 :
Epoch 2/2 :
1 1.712405 0.817533 0.770833 0.229167 00:38
Hide/Show the code
one_cycle
epoch train_loss valid_loss accuracy error_rate
1 0 2.599615 0.9039392 0.7395833 0.2604167
2 1 1.712405 0.8175330 0.7708333 0.2291667
We may dig a bit deeper in training performances by loading the best model, here model_1.pth
, and display some metrics for each species.
Hide/Show the code
$load("model_1") learn
Sequential(
(0): Sequential(
(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(1): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(5): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(6): Sequential(
(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(7): Sequential(
(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): BasicBlock(
(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
)
(1): Sequential(
(0): AdaptiveConcatPool2d(
(ap): AdaptiveAvgPool2d(output_size=1)
(mp): AdaptiveMaxPool2d(output_size=1)
)
(1): fastai.layers.Flatten(full=False)
(2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): Dropout(p=0.25, inplace=False)
(4): Linear(in_features=1024, out_features=512, bias=False)
(5): ReLU(inplace=True)
(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): Dropout(p=0.5, inplace=False)
(8): Linear(in_features=512, out_features=12, bias=False)
)
)
signature: (*args, **kwargs)
Hide/Show the code
<- ClassificationInterpretation_from_learner(learn) interp
Hide/Show the code
$print_classification_report() interp
precision recall f1-score support
blaireaux 0.00 0.00 0.00 2
chamois 0.00 0.00 0.00 3
chasseur 0.50 0.25 0.33 4
chat 0.00 0.00 0.00 2
chevreuil 0.33 0.33 0.33 3
chien 0.50 0.33 0.40 3
humain 0.88 0.79 0.84 29
lievre 0.00 0.00 0.00 1
lynx 0.75 1.00 0.86 3
renard 0.67 1.00 0.80 12
sangliers 0.60 0.86 0.71 7
vehicule 0.87 1.00 0.93 27
accuracy 0.77 96
macro avg 0.43 0.46 0.43 96
weighted avg 0.71 0.77 0.73 96
We may extract the categories that get the most confused.
Hide/Show the code
%>% most_confused() interp
V1 V2 V3
1 humain vehicule 4
2 chasseur humain 3
3 chamois chevreuil 2
4 blaireaux renard 1
5 blaireaux sangliers 1
6 chamois sangliers 1
7 chat lynx 1
8 chat renard 1
9 chevreuil renard 1
10 chevreuil sangliers 1
11 chien renard 1
12 chien sangliers 1
13 humain chasseur 1
14 humain chien 1
15 lievre renard 1
16 sangliers renard 1
6.3 Transferability
In this section, we show how to use our freshly trained model to label images that were taken in another study site in the Ain county, and not used to train our model. First, we get the path to the images.
Hide/Show the code
<- list.files(path = "pix/pixAin",
fls full.names = TRUE,
recursive = TRUE)
Then we carry out prediction, and compare to the truth.
Hide/Show the code
<- character(3)
predicted <- interp$vocab %>% as.character() %>%
categories str_replace_all("[[:punct:]]", " ") %>%
str_trim() %>%
str_split(" ") %>%
unlist()
for (i in 1:length(fls)){
<- learn %>% predict(fls[i]) # make prediction
result 3]] %>% as.character() %>%
result[[str_extract("\\d+") %>%
as.integer() -> index # extract relevant info
<- categories[index + 1] # match it with categories
predicted[i]
}data.frame(truth = c("lynx", "roe deer", "wild boar"),
prediction = predicted) %>%
kable() %>%
kable_styling()
truth | prediction |
---|---|
lynx | renard |
roe deer | lynx |
wild boar | sangliers |
References
Session information
R version 4.5.0 (2025-04-11)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] reticulate_1.42.0 exifr_0.3.2 unmarked_1.5.0 cvms_1.7.0
[5] janitor_2.2.1 highcharter_0.9.4 fastai_2.2.2 ggtext_0.1.2
[9] wesanderson_0.3.7 kableExtra_1.4.0 stringi_1.8.7 cowplot_1.1.3
[13] sf_1.0-21 lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1
[17] dplyr_1.1.4 purrr_1.0.4 readr_2.1.5 tidyr_1.3.1
[21] tibble_3.3.0 ggplot2_3.5.2 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] Rdpack_2.6.4 DBI_1.2.3 rlang_1.1.6 magrittr_2.0.3
[5] snakecase_0.11.1 e1071_1.7-16 compiler_4.5.0 png_0.1-8
[9] systemfonts_1.2.3 vctrs_0.6.5 pkgconfig_2.0.3 crayon_1.5.3
[13] fastmap_1.2.0 backports_1.5.0 labeling_0.4.3 rmarkdown_2.29
[17] markdown_2.0 tzdb_0.5.0 ragg_1.4.0 bit_4.6.0
[21] xfun_0.52 litedown_0.7 jsonlite_2.0.0 jpeg_0.1-11
[25] broom_1.0.8 parallel_4.5.0 R6_2.6.1 RColorBrewer_1.1-3
[29] rlist_0.4.6.2 car_3.1-3 Rcpp_1.0.14 assertthat_0.2.1
[33] knitr_1.50 zoo_1.8-14 Matrix_1.7-3 igraph_2.1.4
[37] timechange_0.3.0 tidyselect_1.2.1 abind_1.4-8 rstudioapi_0.17.1
[41] yaml_2.3.10 curl_6.4.0 lattice_0.22-5 plyr_1.8.9
[45] quantmod_0.4.28 withr_3.0.2 evaluate_1.0.4 units_0.8-7
[49] proxy_0.4-27 xts_0.14.1 xml2_1.3.8 ggpubr_0.6.1
[53] pillar_1.10.2 carData_3.0-5 KernSmooth_2.23-26 checkmate_2.3.2
[57] renv_1.1.4 reformulas_0.4.1 generics_0.1.4 TTR_0.24.4
[61] vroom_1.6.5 hms_1.1.3 commonmark_1.9.5 scales_1.4.0
[65] class_7.3-23 glue_1.8.0 tools_4.5.0 data.table_1.17.6
[69] ggsignif_0.6.4 grid_4.5.0 rbibutils_2.3 Formula_1.2-5
[73] cli_3.6.5 rappdirs_0.3.3 textshaping_1.0.1 viridisLite_0.4.2
[77] svglite_2.2.1 gtable_0.3.6 rstatix_0.7.2 digest_0.6.37
[81] classInt_0.4-11 htmlwidgets_1.6.4 farver_2.1.2 htmltools_0.5.8.1
[85] lifecycle_1.0.4 gridtext_0.1.5 bit64_4.6.0-1 MASS_7.3-65
Acknowledgments
We warmly thank Mathieu Massaviol, Remy Dernat and Khalid Belkhir for their help in using GPU machines on the Montpellier Bioinformatics Biodiversity platform, Julien Renoult for helpful discussions, Delphine Dinouart and Chloé Quillard for their precious help in manually tagging the images, and Vincent Miele for having inspired this work, and his help and support along the way. We also thank the staff of the Federations of Hunters from the Jura and Ain counties, hunters who helped to find locations for camera traps and volunteers who contributed in collecting data. Our thanks also go to Hannah Clipp, Chris Rota and Ken Kellner for sharing a development version of unmarked, and an unpublished version of their paper. The Lynx Predator Prey Program was funded by Auvergne-Rhône-Alpes Region, Ain and Jura departmental Councils, The French National Federation of Hunters, French Environmental Ministry based in Auvergne-Rhone-Alpes and Bourgogne Franche-Comté Region and the French Office for Biodiversity. Our work was also partly funded by the French National Research Agency (grant ANR-16-CE02-0007).
Reuse
Citation
@article{gimenez2022,
author = {Gimenez, Olivier and Kervellec, Maëlis and Fanjul,
Jean-Baptiste and Chaine, Anna and Marescot, Lucile and Bollet,
Yoann and Duchamp, Christophe},
publisher = {French Statistical Society},
title = {Trade-Off Between Deep Learning for Species Identification
and Inference about Predator-Prey Co-Occurrence},
journal = {Computo},
date = {2022-04-22},
doi = {10.57750/yfm2-5f45},
issn = {2824-7795},
langid = {en},
abstract = {Deep learning is used in computer vision problems with
important applications in several scientific fields. In ecology for
example, there is a growing interest in deep learning for
automatizing repetitive analyses on large amounts of images, such as
animal species identification. However, there are challenging issues
toward the wide adoption of deep learning by the community of
ecologists. First, there is a programming barrier as most algorithms
are written in `Python` while most ecologists are versed in `R`.
Second, recent applications of deep learning in ecology have focused
on computational aspects and simple tasks without addressing the
underlying ecological questions or carrying out the statistical data
analysis to answer these questions. Here, we showcase a reproducible
`R` workflow integrating both deep learning and statistical models
using predator-prey relationships as a case study. We illustrate
deep learning for the identification of animal species on images
collected with camera traps, and quantify spatial co-occurrence
using multispecies occupancy models. Despite average model
classification performances, ecological inference was similar
whether we analysed the ground truth dataset or the classified
dataset. This result calls for further work on the trade-offs
between time and resources allocated to train models with deep
learning and our ability to properly address key ecological
questions with biodiversity monitoring. We hope that our
reproducible workflow will be useful to ecologists and applied
statisticians.}
}