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Abstract

The package clayton is designed to be intuitive, user-friendly, and efficient. It offers a
wide range of copula models, including Archimedean, Elliptical, and Extreme. The package is
implemented in pure Python, making it easy to install and use. In addition, we provide detailed
documentation and examples to help users get started quickly. We also conduct a performance
comparison with existing R packages, demonstrating the efficiency of our implementation. The
clayton package is a valuable tool for researchers and practitioners working with copulae in
Python.
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1 Introduction

Modeling dependence relations between random variables is a topic of interest in probability theory
and statistics. The most popular approach is based on the second moment of the underlying random
variables, namely, the covariance. It is well known that only linear dependence can be captured by
the covariance and it is only characteristic for a few models, e.g., the multivariate normal distribution
or binary random variables. As a beneficial alternative to dependence, the concept of copulae, going
back to Sklar (1959), has drawn a lot of attention. The copula 𝐶 ∶ [0, 1]𝑑 → [0, 1] of a random vector
X = (𝑋0, … , 𝑋𝑑−1) with 𝑑 ≥ 2 allows us to separate the effect of dependence from the effect of the
marginal distribution, such that:

ℙ {𝑋0 ≤ 𝑥0, … , 𝑋𝑑−1 ≤ 𝑥𝑑−1} = 𝐶 (ℙ{𝑋0 ≤ 𝑥0}, … , ℙ{𝑋𝑑−1 ≤ 𝑥𝑑−1}) ,

where (𝑥0, … , 𝑥𝑑−1) ∈ ℝ𝑑. The main consequence of this identity is that the copula completely
characterizes the stochastic dependence between the margins of X.

In other words, copulae allow us to model marginal distributions and dependence structure separately.
Furthermore, motivated by Sklar’s theorem, the problem of investigating stochastic dependence is
reduced to the study of multivariate distribution functions under the unit hypercube [0, 1]𝑑 with
uniform margins. The theory of copulae has been of prime interest for many applied fields of science,
such as quantitative finance (Patton (2012)) or environmental sciences (Mishra and Singh (2011)).
This increasing number of applications has led to a demand for statistical methods. For example,
semiparametric estimation (Genest, Ghoudi, and Rivest (1995)), nonparametric estimation (Fermanian,
Radulović, and Wegkamp (2004)) of copulae or nonparametric estimation of conditional copulae
(Gijbels, Omelka, and Veraverbeke (2015), Portier and Segers (2018)) have been investigated. These
results are established for a fixed arbitrary dimension 𝑑 ≥ 2, but several investigations (e.g. Einmahl
and Lin (2006), Einmahl and Segers (2021)) are done for functional data for the tail copula, which
captures dependence in the upper tail.

Software implementation of copulae has been extensively studied in R, for example in the packages
A. G. Stephenson (2002), Jun Yan (2007), Schepsmeier et al. (2019). However, methods for working
with copulae in Python are still limited. As far as we know, copula-dedicated packages in Python are
mainly designed for modeling, such as Alvarez et al. (2021) and Bock and Chapman (2021). These
packages use maximum likelihood methods to estimate the copula parameters from observed data and
generate synthetic data using the estimated copula model. Other packages provide sampling methods
for copulae, but they are typically restricted to the bivariate case and the conditional simulation
method (see, for example, Baudin et al. (2017)). Additionally, if the multivariate case is considered
only Archimedean and elliptical copulae are under interest and those packages (see Nicolas (2022))
do not include the extreme value class in arbitrary dimensions 𝑑 ≥ 2. In this paper, we propose to
implement a wide range of copulae, including the extreme value class, in arbitrary fixed dimension
𝑑 ≥ 2.

Through this paper we adopt the following notational conventions: all the indices will start at 0 as in
Python. Consider (Ω,𝒜 , ℙ) a probability space and let X = (𝑋0, … , 𝑋𝑑−1) be a 𝑑-dimensional random
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vector with values in (ℝ𝑑,ℬ(ℝ𝑑)), with 𝑑 ≥ 2 and ℬ(ℝ𝑑) the Borel 𝜎-algebra of ℝ𝑑. This random
vector has a joint distribution 𝐹 with copula 𝐶 and its margins are denoted by 𝐹𝑗(𝑥) = ℙ{𝑋𝑗 ≤ 𝑥} for
all 𝑥 ∈ ℝ and 𝑗 ∈ {0, … , 𝑑 − 1}. Denote by U = (𝑈0, … , 𝑈𝑑−1) a 𝑑 random vector with copula 𝐶 and
uniform margins. All bold letters x will denote a vector of ℝ𝑑.

The clayton package, whose Python code can be found in https://github.com/Aleboul/clayton, uses
object-oriented features of the Python language. The package contains classes for Archimedean,
elliptical, and extreme value copulae. In Section 2, we briefly describe the classes defined in the
package. Section 3 presentsmethods for generating randomvectors. In Section 4, we apply the clayton
package to model pairwise dependence between maxima. Section 5 discusses potential improvements
to the package and provides concluding remarks. Sections from Section 6.1 to Section 6.5 define and
illustrate all the parametric copula models implemented in the package.

2 Classes

The architecture of the code is shown in Figure 1. At the third level of the architecture, we find
important parametric models of Archimedean and extreme value copulae (depicted as blue in the
figure). These parametric models contain methods such as the generator function 𝜑 (see Section 2.1)
for Archimedean copulae and the Pickands dependence function 𝐴 (see Section 2.2) for extreme
value copulae (depicted as green in the figure). We provide a brief overview of Archimedean copulae
and some of their properties in high-dimensional spaces in Section 2.1. A characterization of extreme
value copulae is given in Section 2.2. The from Section 6.1 to Section 6.5 define and illustrate all the
copula models implemented in the package.

2.1 The Archimedean class

Let 𝜑 be a generator that is a strictly decreasing, convex function from [0, 1] to [0, ∞] such that
𝜑(1) = 0 and 𝜑(0) = ∞. We denote the generalized inverse of 𝜑 by 𝜑←. Consider the following
equation:

𝐶(u) = 𝜑←(𝜑(𝑢0) + ⋯ + 𝜑(𝑢𝑑−1)). (1)

If this relation holds and 𝐶 is a copula function, then 𝐶 is called an Archimedean copula. A necessary
condition for Equation 1 to be a copula is that the generator 𝜑 is a 𝑑-monotonic function, i.e., it is
differentiable up to the order 𝑑 and its derivatives satisfy

(−1)𝑘 (𝜑)(𝑘) (𝑥) ≥ 0, 𝑘 ∈ {1, … , 𝑑} (2)

for 𝑥 ∈ (0,∞) (see Corollary 2.1 ofMcNeil andNešlehová (2009)). Note that 𝑑-monotonic Archimedean
inverse generators do not necessarily generate Archimedean copulae in dimensions higher than 𝑑
(see McNeil and Nešlehová (2009)). As a result, some Archimedean subclasses are only implemented
for the bivariate case as they do not generate an Archimedean copula in higher dimensions. In the
bivariate case, Equation 2 can be interpreted as 𝜑 being a convex function.

The clayton package implements common one-parameter families of Archimedean copulae, such as
the Clayton (Clayton (1978)), Gumbel (Gumbel (1960)), Joe (Joe (1997)), Frank (Frank (1979)), and
AMH (Ali, Mikhail, and Haq (1978)) copulae for the multivariate case. It is worth noting that all
Archimedean copulae are symmetric, and in dimensions 3 or higher, only positive associations are
allowed. For the specific bivariate case, the package also implements other families, such as those
numbered from 4.2.9 to 4.2.15 and 4.2.22 in Section 4.2 of Nelsen (2007). Definitions and illustrations
of these parametric copula models can be found in Section 6.1 and Section 6.3.
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Figure 1: The figure shows a object diagram that structures the code. The Multivariate class serves
as the root and is used to instantiate all its child classes Archimedean, Extreme, Gaussian, and
Student in red. The blue-colored classes correspond to various parametric copula models, and the
green-colored classes represent examples of methods. Symbols 𝜑, 𝜑←, ̇𝜑 correspond to the generator
function, its inverse, and its derivative, respectively, while 𝐴, �̇� refer to the Pickands dependence
function and its derivative.
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2.2 The Extreme class

Investigating the notion of copulae within the framework of multivariate extreme value theory leads
to the extreme value copulae (see Gudendorf and Segers (2010) for an overview) defined as

𝐶(u) = exp (−ℓ(− ln(𝑢0), … , − ln(𝑢𝑑−1))) , u ∈ (0, 1]𝑑, (3)

where ℓ ∶ [0, ∞)𝑑 → [0,∞) the stable tail dependence function which is convex, homogeneous
of order one, namely ℓ(𝑐x) = 𝑐ℓ(x) for 𝑐 > 0 and satisfies max(𝑥0, … , 𝑥𝑑−1) ≤ ℓ(𝑥0, … , 𝑥𝑑−1) ≤
𝑥0 + ⋯ + 𝑥𝑑−1, ∀x ∈ [0,∞)𝑑. Let Δ𝑑−1 = {w ∈ [0, 1]𝑑 ∶ 𝑤0 + ⋯ + 𝑤𝑑−1 = 1} be the unit simplex. The
Pickands dependence function 𝐴 ∶ Δ𝑑−1 → [1/𝑑, 1] characterizes ℓ by its homogeneity, which is the
restriction of ℓ to the unit simplex Δ𝑑−1:

ℓ(𝑥0, … , 𝑥𝑑−1) = (𝑥0 + ⋯ + 𝑥𝑑−1)𝐴(𝑤0, … , 𝑤𝑑−1), 𝑤𝑗 =
𝑥𝑗

𝑥0 + ⋯ + 𝑥𝑑−1
, (4)

for 𝑗 ∈ {1, … , 𝑑−1} and𝑤0 = 1−𝑤1−⋯−𝑤𝑑−1 with x ∈ [0,∞)𝑑∖{0}. The Pickands dependence function
characterizes the extremal dependence structure of an extreme value random vector and verifies
max{𝑤0, … , 𝑤𝑑−1} ≤ 𝐴(𝑤0, … , 𝑤𝑑−1) ≤ 1 where the lower bound corresponds to comonotonicity and
the upper bound corresponds to independence. Estimating this function is an active area of research,
with many compelling studies having been conducted on the topic (see, for example, Bücher, Dette,
and Volgushev (2011), Gudendorf and Segers (2012)).

From a practical point of view, the family of extreme value copulae is very rich and arises naturally
as the limiting distribution of properly normalised componentwise maxima. Furthermore, it contains
a rich variety of parametric models and allows asymmetric dependence, that is, for the bivariate case:

∃(𝑢0, 𝑢1) ∈ [0, 1]2, 𝐶(𝑢0, 𝑢1) ≠ 𝐶(𝑢1, 𝑢0).

In the multivariate framework, the logistic copula (or Gumbel, see Gumbel (1960)), the asymmetric
logistic copula (Tawn (1990)), the Hüsler and Reiss distribution (Hüsler and Reiss (1989)), the t-EV
copula (Demarta and McNeil (2005)), Bilogistic model (Smith (1990)) are implemented. It’s worth
noting that the logistic copula is the sole model that is both Archimedean and extreme value. The
library includes bivariate extreme value copulae such as asymmetric negative logistic (Joe (1990)),
asymmetric mixed (Tawn (1988)). The reader is again invited to read from Section 6.2 to Section 6.4
for precise definitions of these models.

3 Random number generator

We propose a Python-based implementation for generating random numbers from a wide variety of
copulae. The clayton package requires a few external libraries that are commonly used in scientific
computing in Python.

• numpy version 1.6.1 or newer. This is the fundamental package for scientific computing, it
contains linear algebra functions and matrix / vector objects (Harris et al. (2020)).

• scipy version 1.7.1 or newer. A library of open-source software for mathematics, science and
engineering (Virtanen et al. (2020)).

The clayton package provides two methods for generating random vectors: sample_unimargin and
sample. The first method generates a sample where the margins are uniformly distributed on the
unit interval [0, 1], while the second method generates a sample from the chosen margins.

In Section 3.1, we present an algorithm that uses the conditioning method to sample from a copula.
This method is very general and can be used for any copula that is sufficiently smooth (see Equation 5
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and Equation 8 below). However, the practical infeasibility of the algorithm in dimensions higher
than 2 and the computational intensity of numerical inversion call for more efficient ways to sample
in higher dimensions. The purpose of Section 3.2 is to present such methods and to provide details on
the methods used in the clayton package. In each section, we provide examples of code to illustrate
how to instantiate a copula and how to sample with clayton.

In the following sections, we will use Python code that assumes that the following packages have
been loaded:

3.1 The bivariate case

In this subsection, we address the problem of generating a bivariate sample from a specified joint
distribution with 𝑑 = 2. Suppose that we want to sample a bivariate random vector X with copula
𝐶. In the case where the components are independent, the sampling procedure is straightforward:
we can independently sample 𝑋0 and 𝑋1. However, in the general case where the copula is not the
independent copula, this approach is not applicable.

One solution to this problem is to use the conditioning method to sample from the copula. This
method relies on the fact that given (𝑈0, 𝑈1) with copula 𝐶, the conditonal law of 𝑈1 given 𝑈0 is
written as:

𝑐𝑢0(𝑢1) ≜ ℙ {𝑈1 ≤ 𝑢1|𝑈0 = 𝑢0} =
𝜕𝐶(𝑢0, 𝑢1)

𝜕𝑢0
. (5)

This allows us to first sample 𝑈0 from a uniform distribution on the unit interval, and then to use
the copula to generate 𝑈1 given 𝑈0. Finally, we can transform the resulting sample (𝑈0, 𝑈1) into the
original space by applying the inverse marginal distributions 𝐹−10 and 𝐹−11 to 𝑈0 and 𝑈1 respectively.
Thus, an algorithm for sampling bivariate copulae is given in Figure 2. Algorithm in Figure 2 presents
a procedure for generating a bivariate sample from a copula. The algorithm takes as input the length
of the sample 𝑛, as well as the parameters of the copula (𝜃, 𝜓1, 𝜓2). The output is a bivariate sample
from the desired copula model, denoted {(𝑢(1)0 , 𝑢(1)1 ), … , (𝑢(𝑛)0 , 𝑢(𝑛)1 )}. This algorithm is applicable as
long as the copula has a first partial derivative with respect to its first component.

Figure 2: Conditional sampling from copula

For step 6 of the algorithm, we need to find 𝑢1 ∈ [0, 1] such that 𝑐𝑢0(𝑢1) − 𝑡1 = 0 holds. This 𝑢1 always
exists because for every 𝑢 ∈]0, 1[, we have 0 ≤ 𝑐𝑢0(𝑢) ≤ 1, and the function 𝑢 ↦ 𝑐𝑢0(𝑢) is increasing
(see Theorem 2.2.7 of Nelsen (2007) for a proof). This step can be solved using the brentq function
from the scipy package. A sufficient condition for a copula to have a first partial derivative with
respect to its first component in the Archimedean and extreme value cases is that the generator 𝜑
and the Pickands dependence function 𝐴 are continuously differentiable on ]0, 1[, respectively. In
this case, the first partial derivatives of the copula are given by:
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𝜕𝐶
𝜕𝑢0

(𝑢0, 𝑢1) =
𝜑′(𝑢0)

𝜑′(𝐶(𝑢0, 𝑢1))
, (𝑢0, 𝑢1) ∈]0, 1[2, (6)

𝜕𝐶
𝜕𝑢0

(𝑢0, 𝑢1) =
𝜑′(𝑢0)

𝜑′(𝐶(𝑢0, 𝑢1))
, (𝑢0, 𝑢1) ∈]0, 1[2, (7)

where 𝑡 = ln(𝑢1)/ ln(𝑢0𝑢1) ∈ (0, 1) and 𝜇(𝑡) = 𝐴(𝑡) − 𝑡𝐴′(𝑡).

We now have all the necessary theoretical tools to give details on how the clayton package is
designed. The file base.py contains the Multivariate class and the sample method to generate
random numbers from X with copula 𝐶. To do so, we use the inversion method that is to sample
from U using algorithm in Figure 2 and we compose the corresponding uniform margins by 𝐹←𝑗 .
(??) indicates that the sole knowledge of 𝐴 and 𝜑 and their respective derivatives are needed in
order to perform the sixth step of algorithm in Figure 2. For that purpose, cond_sim method located
inside Archimedean and Extreme classes performs algorithm in Figure 2. Then each child of
the bivariate Archimedean (resp. Extreme) class is thus defined by its generator 𝜑 (resp. 𝐴), it’s
derivative 𝜑′ (resp. 𝐴′) and it’s inverse 𝜑← as emphasized in green in Figure 1. Namely, we perform
algorithm in Figure 2 for the Archimedean subclasses Frank, AMH, Clayton (when 𝜃 < 0 for the
previous three), Nelsen_9, Nelsen_10, Nelsen_11, Nelsen_12, Nelsen_13, Nelsen_14, Nelsen_15
and Nelsen_22. For the Extreme class, such algorithm is performed for the AsyNegLog and AsyMix.
For other models, faster algorithms are known and thus implemented, we refer to Section 3.2 for
details.

The following code illustrates the random vector generation for a bivariate Archimedean copula.
By defining the parameter of the copula and the sample’s length, the constructor for this copula is
available and can be called using the Clayton method, such as:

To obtain a sample with uniform margins and a Clayton copula, we can use the sample_unimargin
method, as follows:

Here, the sample object is a numpy array with 2 columns and 1024 rows, where each row contains a
realization from a Clayton copula (see below)
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3.2 The multivariate case

Wewill now address the generation of multivariate Archimedean and Extreme value copulae proposed
in the Clayton package. In the multivariate case, the link between partial derivatives and the
conditional law remains. Indeed, let (𝑈0, … , 𝑈𝑑−1) be a 𝑑-dimensional random vector with uniform
margins and copula 𝐶. The conditional distribution of 𝑈𝑘 given the values of 𝑈0, … , 𝑈𝑘−1 is

ℙ {𝑈𝑘 ≤ 𝑢𝑘|𝑈0 = 𝑢0, … , 𝑈𝑘−1 = 𝑢𝑘−1} =
𝜕𝑘−1𝐶(𝑢0, … , 𝑢𝑘, 1, … , 1)/𝜕𝑢0…𝜕𝑢𝑘−1
𝜕𝑘−1𝐶(𝑢0, … , 𝑢𝑘−1, 1, … , 1)/𝜕𝑢0…𝜕𝑢𝑘−1

. (8)

for 𝑘 ∈ 1, … , 𝑑 − 1. The conditional simulation algorithm may be written as follows.

1. Generate 𝑑 independent uniform random on [0, 1] variates 𝑣0, … , 𝑣𝑑−1.
2. Set 𝑢0 = 𝑣0.
3. For 𝑘 = 1, … , 𝑑 − 1, evaluate the inverse of the conditional distribution given by (??) at 𝑣𝑘, to

generate 𝑢𝑘.

Nevertheless, the evaluation of the inverse conditional distribution becomes increasingly complicated
as the dimension 𝑑 increases. Furthermore, it can be difficult for some models to derive a closed
form of Equation 8 that makes it impossible to implement it in a general algorithm with only the
dimension 𝑑 as an input. For multivariate Archimedean copulae, McNeil and Nešlehová (2009) give a
method to generate a random vector from the 𝑑-dimensional copula 𝐶 with generator 𝜑 (see Section
5.2 of McNeil and Nešlehová (2009)). A stochastic representation for Archimedean copulae generated
by a 𝑑-monotone generator is given by

U = (𝜑←(𝑅𝑆1), … , 𝜑←(𝑅𝑆𝑑)) ∼ 𝐶, (9)

where 𝑅 ∼ 𝐹𝑅, the radial distribution which is independent of 𝑆 and 𝑆 is distributed uniformly in the
unit simplex Δ𝑑−1. One challenging aspect of this algorithm is to have an accurate evaluation of the
radial distribution of the Archimedean copula and thus to numerically inverse this distribution. The
associated radial distribution for the Clayton copula is given in Example 3.3 McNeil and Nešlehová
(2009) while those of the Joe, AMH, Gumbel and Frank copulae are given in Hofert, Mächler, and
McNeil (2012). In general, one can use numerical inversion algorithms for computing the inverse
of the radial distribution, however it will lead to spurious numerical errors. Other algorithms exist
when the generator is known to be the Laplace-Stieltjes transform, denoted as ℒ𝒮, of some positive
random variables (see Marshall and Olkin (1988), Frees and Valdez (1998)). This positive random
variable is often referenced as the frailty distribution. In this framework, Archimedean copulae allow
for the stochastic representation

U = (𝜑←(𝐸1/𝑉 ), … , 𝜑←(𝐸𝑑/𝑉 )) ∼ 𝐶,

with 𝑉 ∼ 𝐹 = ℒ𝒮−1[𝜑←] the frailty and 𝐸1, … , 𝐸𝑑 are distributed i.i.d. according to a standard
exponential and independent of 𝑉. Algorithm in Figure 3 presents a procedure for generating a multi-
variate sample from an Archimedean copula where the frailty distribution is known. The algorithm
takes as an input the length of the sample 𝑛, as well as the parameter of the copula 𝜃. The output is a
𝑑-variate sample from the desired copula model, denoted {(𝑢(1)0 , … , 𝑢(1)𝑑−1), … , (𝑢(𝑛)0 , … , 𝑢(𝑛)𝑑−1)}.

In this framework, we define _frailty_sim method defined inside the Archimedean class which
performs algorithm in Figure 3. Then, each Archimedean copula is defined by the generator 𝜑, it’s
inverse 𝜑← and the frailty distribution denoted as ℒ𝒮−1[𝜑←] as long as we know the frailty. This is
the case for Joe, Clayton, AMH or Frank.
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Figure 3: Sampling from Archimedean copula using frailty distribution

For the extreme value case, algorithms have been proposed, as in A. Stephenson (2003) (see Algorithms
2.1 and 2.2), who proposes sampling methods for the Gumbel and the asymmetric logistic model.
These algorithms are implemented in the clayton package. Note that these algorithms are model-
specific, thus the sample_unimargin method is exceptionally located in the corresponding child of
the multivariate Extreme class. Another procedure designed by Dombry, Engelke, and Oesting
(2016) to sample from multivariate extreme value models using extremal functions (see Algorithm
2 in Dombry, Engelke, and Oesting (2016)) is also of prime interest. For the implemented models
using this algorithm, namely Hüsler-Reiss, tEV, Bilogistic and Dirichlet models, a method called
_rextfunc is located inside each classes which allows to generate an observation from the according
law of the extremal function.

Samples from the Gaussian and Student copula are directly given by Algorithm 5.9 and 5.10 respec-
tively of Alexander J. McNeil (2005). As each algorithm is model specific, the sample_unimargin
method is located inside the Gaussian and Student classes.

We present how to construct a multivariate Archimedean copula and to generate random vectors
from this model. Introducing the parameters of the copula, we appeal the following lines to construct
our copula object:

We now call the sample_unimargin method to obtain randomly generated vectors.

We thus represent in three dimensions these realizations below.

9



4 Case study : Modeling pairwise dependence between spatial max-
imas with missing data

We now proceed to a case study where we use our python package to assess, under a finite sample
framework, the asymptotic properties of an estimator of the 𝜆-madogram when data are completely
missing at random (MCAR). This case study comes from numerical results of Boulin et al. (2022).
The 𝜆-madogram belongs to a family of estimators, namely the madogram, which is of prime interest
in environmental sciences, as it is designed to model pairwise dependence between maxima in space,
see, e.g., Bernard et al. (2013), Bador et al. (2015), Saunders, Stephenson, and Karoly (2021) where
the madogram was used as a dissimilarity measure to perform clustering. Where in several fields,
for example econometrics (Wooldridge (2007)) or survey theory (Boistard, Chauvet, and Haziza
(2016)), the MCAR hypothesis appears to be a strong hypothesis, this hypothesis is more realistic
in environmental research as the missingness of one observation is usually due to instruments,
communication and processing errors that may be reasonably supposed independent of the quantity
of interest. In Section 4.1, we define objects and properties of interest while in Section 4.2 we describe
a detailed tutorial in python and with clayton package to compare the asymptotic variance with an
empirical counterpart of the 𝜆-madogram with 𝜆 = 0.5.

4.1 Background

It was emphasized that the possible dependence between maxima can be described with the extreme
value copula. This function is completely characterized by the Pickands dependence function (see
Equation 4) where the latter is equivalent to the 𝜆-madogram introduced by Naveau et al. (2009) and
defined as

𝜈(𝜆) = 𝔼 [|{𝐹0(𝑋0)}1/𝜆 − {𝐹1(𝑋1)}1/(1−𝜆)|] , (10)

with 𝜆 ∈ (0, 1), and if 𝜆 = 0 and 0 < 𝑢 < 1, then 𝑢1/𝜆 = 0 by convention. The 𝜆-madogram
took its inspiration from the extensively used geostatistics tool, the variogram (see Chapter 1.3 of
Algorithm ?? for a definition and some classical properties). The 𝜆-madogram can be interpreted as
the 𝐿1-distance between the uniform margins elevated to the inverse of the corresponding weights 𝜆
and 1 − 𝜆. This quantity describes the dependence structure between extremes by its relation with
the Pickands dependence function. If we suppose that 𝐶 is an extreme value copula as in (??), we
have

𝐴(𝜆) =
𝜈(𝜆) + 𝑐(𝜆)

1 − 𝜈(𝜆) − 𝑐(𝜆)
, (11)

with 𝑐(𝜆) = 2−1(𝜆/(1 − 𝜆) + (1 − 𝜆)/𝜆) (see Proposition 3 of Marcon et al. (2017) for details).

We consider independent and identically distributed i.i.d. copies X1, … ,X𝑛 of X. In presence of
missing data, we do not observe a complete vector X𝑖 for 𝑖 ∈ {1, … , 𝑛}. We introduce I𝑖 ∈ {0, 1}2
which satisfies, ∀𝑗 ∈ {0, 1}, if 𝑋𝑖,𝑗 is not observed then 𝐼𝑖,𝑗 = 0. To formalize incomplete observations,
we introduce the incomplete vector X̃𝑖 with values in the product space ⨂2

𝑗=1(ℝ ∪ {NA}) such as

�̃�𝑖,𝑗 = 𝑋𝑖,𝑗𝐼𝑖,𝑗 + NA(1 − 𝐼𝑖,𝑗), 𝑖 ∈ {1, … , 𝑛}, 𝑗 ∈ {0, … , 𝑑 − 1}.

We thus suppose that we observe a 4-tuple such as
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(I𝑖, X̃𝑖), 𝑖 ∈ {1, … , 𝑛}, (12)

i.e. at each 𝑖 ∈ {1, … , 𝑛}, several entries may be missing. We also suppose that for all 𝑖 ∈ {1, … , 𝑛},
I𝑖 are i.i.d copies from I = (𝐼0, 𝐼1) where 𝐼𝑗 is distributed according to a Bernoulli random variable
ℬ(𝑝𝑗) with 𝑝𝑗 = ℙ(𝐼𝑗 = 1) for 𝑗 ∈ {0, 1}. We denote by 𝑝 the probability of observing completely
a realization from X, that is 𝑝 = ℙ(𝐼0 = 1, 𝐼1 = 1). In Boulin et al. (2022), hybrid and corrected
estimators, respectively denoted as ̂𝜈ℋ𝑛 and ̂𝜈ℋ∗

𝑛 , are proposed to estimate nonparametrically the
𝜆-madogram in presence of missing data completely at random. Furthermore, a closed expression
of their asymptotic variances for 𝜆 ∈]0, 1[ is also given. This result is summarized in the following
proposition.

Theorem 4.1 (Boulin et al. (2022)). Let (I𝑖, X̃𝑖)𝑛𝑖=1 be a samble given by Equation 12. For 𝜆 ∈]0, 1[, if 𝐶
is an extreme value copula with Pickands dependence function 𝐴, we have as 𝑛 → ∞

√𝑛 ( ̂𝜈ℋ𝑛 (𝜆) − 𝜈(𝜆))
𝑑
→ 𝒩(0, 𝒮ℋ(𝑝1, 𝑝2, 𝑝, 𝜆)) ,

√𝑛 ( ̂𝜈ℋ∗
𝑛 (𝜆) − 𝜈(𝜆))

𝑑
→ 𝒩(0, 𝒮ℋ∗(𝑝1, 𝑝2, 𝑝, 𝜆)) ,

where 𝒮ℋ(𝑝1, 𝑝2, 𝑝, 𝜆) and 𝒮ℋ∗(𝑝1, 𝑝2, 𝑝, 𝜆) are the asymptoptic variances of the random variables.

4.2 Numerical results

Benefiting from generating data with clayton we are thus able, with Monte Carlo simulation, to
assess theoretical results given by Theorem 4.1 in a finite sample setting. For that purpose, we
implement a MonteCarlo class (in monte_carlo.py file) which contains some methods to perform
some Monte Carlo iterations for a given extreme value copula. Now, we set up parameters to sample
our bivariate dataset. For this subsection, we choose the asymmetric negative logistic model (see
Section 6.2 for a definition) with parameters 𝜃 = 10, 𝜓1 = 0.1, 𝜓2 = 1.0 and we define the following
function:

We choose the standard normal and exponential as margins. To simulate this sample, the following
lines should be typed:

The 1024 × 2 array sample contains 1024 realization of the asymmetric negative logistic model
where the first column is distributed according to a standard normal random variable and the second
column as a standard exponential. This distribution is depicted below. To obtain it, one needs the
following lines of command:
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Before going into further details, we will present the missing mechanism. Let 𝑉0 and 𝑉1 be random
variables uniformly distributed under the ]0, 1[ segment with copula 𝐶(𝑉0,𝑉1). We set 𝐼0 = 1{𝑉0 ≤ 𝑝0}
and 𝐼1 = 1{𝑉1 ≤ 𝑝1}. It is thus immediate that 𝐼0 ∼ ℬ(𝑝0) and 𝐼1 ∼ ℬ(𝑝1) and 𝑝 ≜ ℙ{𝐼0 = 1, 𝐼1 =
1} = 𝐶(𝑉0,𝑉1)(𝑝0, 𝑝1). For our illustration, we will take 𝐶(𝑉0,𝑉1) as a Joe copula with parameter 𝜃 = 2.0
(we refer to Section 6.1 for a definition of this copula). For this copula, it is more likely to observe a
realization 𝑣0 ≥ 0.8 from 𝑉0 if 𝑣1 ≥ 0.8 from 𝑉1. If we observe 𝑣1 < 0.8, the realization 𝑣0 is close to
being independent of 𝑣1. In climate studies, extreme events could damage the recording instrument
in the surrounding regions where they occur, thus the missingness of one variable may depend on
others. We initialize the copula 𝐶(𝑉0,𝑉1) with the following line:

For a given 𝜆 ∈]0, 1[, we now want to estimate a 𝜆-madogram with a sample from the asymmetric
negative logistic model, where some observations aremissing due to themissingmechanism described
above. We will repeat this step several times to compute an empirical counterpart of the asymptotic
variance. The MonteCarlo object has been designed for this purpose: we specify the number of
iterations 𝑛𝑖𝑡𝑒𝑟 (take 𝑛𝑖𝑡𝑒𝑟 = 1024), the chosen extreme value copula (asymmetric negative logistic
model), the missing mechanism (described by 𝐶(𝑉0,𝑉1) and 𝑝0 = 𝑝1 = 0.9), and 𝜆 (noted w). We can
write the following lines of code:

The MonteCarlo object is thus initialized with all parameters needed. We may use the simu method to
generate a DataFrame (a pandas object) composed out 1024 rows and 3 columns. Each row contains
an estimate of the 𝜆-madogram, ̂𝜈ℋ∗

𝑛 in Theorem 4.1 (var_mado), the sample length 𝑛 (n) and the
normalized estimation error (scaled). We thus call the simu method.

wmado n scaled
0 0.148163 512.0 -0.128602
1 0.149337 512.0 -0.102024
2 0.153788 512.0 -0.001322
3 0.153169 512.0 -0.015324
4 0.155756 512.0 0.043209

The argument corr=True specifies that we compute the corrected estimator, ̂𝜈ℋ∗
𝑛 in Theorem 4.1.

Now, using the var_mado method defined inside in the Extreme class, we obtain the asymptotic
variance for the given model and parameters from the missing mechanism. We obtain this quantity
as follows

12



0.015417245591834503
0.01370549107120327

We propose here to check numerically the asymptotic normality with variance𝒮ℋ∗ of the normalized
estimation error of the corrected estimator. We have all data in hand and the asymptotic variance
was computed by lines above. We thus write:

5 Discussion

5.1 Comparison of clayton with R packages

To compare clayton to existing packages in R, we consider the copula package (Kojadinovic and
Yan (2010)) and mev (Belzile et al. (2022)) for sampling from Archimedean and multivariate extreme
value distributions, respectively. To run the experiment, we use two computer clusters. The first
cluster consists of five nodes, each with two 18-core Xeon Gold 3.1 GHz processors and 192 GB of
memory, with 2933 MHz per socket. The second cluster has two CPU sockets, each containing a Xeon
Platinum 8268 2.90 GHz processor with 24 cores. These configurations provide a significant amount
of computational power and are well-suited for handling complex, data-intensive tasks. We use the
first cluster to install the copula package and sample from the Clayton, Frank, and Joe models. We
consider an increasing dimension 𝑑 ∈ {50, 100, … , 1600} for a fixed sample size of 𝑛 = 1000. For the
copula package, we compute the average time spent across 100 runs in order to cancel out variability.
We use the second cluster to install the mev package and call some of its methods to sample from the
Husler Reiss, Logistic, and TEV distributions. Sampling from the latter is fast, but sampling from
the two others is time consuming. Therefore, we only consider dimensions 𝑑 ∈ {25, 50, … , 250} for a
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fixed sample size of 𝑛 = 1000.

(a) Archimedean (b) Multivariate extreme value

Figure 4: Comparison results. Time spent (in seconds) to sample from the corresponding models with
respect to the dimension 𝑑. The left panel shows the results for sampling from Clayton, Frank and
Joe using clayton in Python and copula in R. The right panel shows the results for sampling from
HuslerReiss, Logistic and TEV by clayton in Python and mev in R. In both cases, 1000 vectors are
generated for each model.

The figure shows the results of a comparison between the clayton and copula packages in R, and
the mev package in Python. The comparison shows that the clayton package is more efficient at
sampling from Clayton, Frank and Joe copulae than the copula package. The gap in efficiency may
be due to the choice of algorithms used in the clayton package, which uses frailty distributions. The
time required for sampling increases linearly with the dimension for the clayton package, but shows
a more erratic behavior for the copula package.

5.2 Conclusion

This paper presents the construction and some implementations of the Python package clayton
for random copula sampling. This is a seminal work in the field of software implementation of
copula modeling in Python and there is much more potential for growth. It is hoped that the
potential diffusion of the software through those who need it may bring further implementations
for multivariate modeling with copulae under Python. For example, choosing a copula to fit the
data is an important but difficult problem. A robust approach to estimating copulae has been
investigated recently by Algorithm ?? using Maximum Mean Discrepancy. In relation to our example,
semiparametric estimation of copulae with missing data could be of great interest, as proposed by
Hamori, Motegi, and Zhang (2019).

Additionally, implementation of the algorithm proposed by McNeil and Nešlehová (2009) for generat-
ing random vectors for Archimedean copulae has been tackled, but as expected, numerical inversion
gives spurious results, especially when the parameter 𝜃 and the dimension 𝑑 are high. Furthermore,
as the support of the radial distribution is contained in the real line, numerical inversion leads to
increased computational time. Further investigation is needed in order to generate random vectors
from classical Archimedan models using the radial distribution.

A direction of improvement for the clayton package is dependence modeling with Vine copulae,
which have recently been a tool of high interest in the machine learning community (see, e.g.,
Lopez-Paz, Hernández-Lobato, and Zoubin (2013), Veeramachaneni, Cuesta-Infante, and O’Reilly
(2015), Carrera, Santana, and Lozano (2016), Gonçalves, Von Zuben, and Banerjee (2016) or Sun,
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Cuesta-Infante, and Veeramachaneni (2019)). This highlights the need for dependence modeling with
copulae in Python, as a significant part of the machine learning community uses this language. In
relation to this paper, Vine copulae may be useful for modeling dependencies between extreme events,
as suggested by Simpson, Wadsworth, and Tawn (2021), Nolde and Wadsworth (2021). Furthermore,
other copula models could be implemented to model further dependencies. These implementations
will expand the scope of dependence modeling with Python and provide high-quality, usable tools
for anyone who needs them.
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6.2 Implemented bivariate extreme models
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6.3 Multivariate Archimedean copulae

6.4 Multivariate extreme models

Before giving the main details, we introduce some notations. Let 𝐵 be the set of all nonempty subsets
of {1, … , 𝑑} and 𝐵1 = {𝑏 ∈ 𝐵, |𝑏| = 1}, where |𝑏| denotes the number of elements in thet set 𝑏. We note
by 𝐵(𝑗) = {𝑏 ∈ 𝐵, 𝑗 ∈ 𝑏}. For 𝑑 = 3, the Pickands is expressed as

𝐴(w) =𝛼1𝑤1 + 𝜓1𝑤2 + 𝜙1𝑤3 + ((𝛼2𝑤1)𝜃1 + (𝜓2𝑤2)𝜃1)
1/𝜃1 + ((𝛼3𝑤2)𝜃2 + (𝜙2𝑤3)𝜃2)

1/𝜃2

+ ((𝜓3𝑤2)𝜃3 + (𝜙3𝑤3)𝜃3)
1/𝜃3 + ((𝛼4𝑤1)𝜃4 + (𝜓4𝑤2)𝜃4 + (𝜙4𝑤3)𝜃4)

1/𝜃4 ,

where 𝛼 = (𝛼1, … , 𝛼4), 𝜓 = (𝜓1, … , 𝜓4), 𝜙 = (𝜙1, … , 𝜙4) are all elements of Δ3. We take 𝛼 =
(0.4, 0.3, 0.1, 0.2), 𝜓 = (0.1, 0.2, 0.4, 0.3), 𝜙 = (0.6, 0.1, 0.1, 0.2) and 𝜃 = (𝜃1, … , 𝜃4) = (0.6, 0.5, 0.8, 0.3) as
the dependence parameter.
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The Dirichlet model is a mixture of 𝑚 Dirichlet densities, that is

ℎ(w) =
𝑚
∑
𝑘=1

𝜃𝑘
Γ(∑𝑑

𝑗=1 𝜎𝑘𝑗)

Π𝑑
𝑗=1Γ(𝜎𝑘𝑗)

Π𝑑
𝑗=1𝑤

𝜎𝑘𝑗−1
𝑗 ,

with ∑𝑚
𝑘=1 𝜃𝑘 = 1, 𝜎𝑘𝑗 > 0 for 𝑘 ∈ {1, … , 𝑚} and 𝑗 ∈ {1, … , 𝑑}. Let 𝒟 ∈ [0,∞)(𝑑−1)×(𝑑−1) denotes the

space of symmetric strictly conditionnaly negative definite matrices that is

𝒟𝑘 = {Γ ∈ [0,∞)𝑘×𝑘 ∶ 𝑎⊤Γ𝑎 < 0 for all 𝑎 ∈ ℝ𝑘 ∖ {0}with
𝑑−1
∑
𝑗=1

𝑎𝑗 = 0,

Γ𝑖𝑖 = 0, Γ𝑖𝑗 = Γ𝑗𝑖, 1 ≤ 𝑖, 𝑗 ≤ 𝑘}.

For any 2 ≤ 𝑘 ≤ 𝑑, consider 𝑚′ = (𝑚1, … , 𝑚𝑘) with 1 ≤ 𝑚1 < ⋯ < 𝑚𝑘 ≤ 𝑑 define

Σ(𝑘)𝑚 = 2 (Γ𝑚𝑖𝑚𝑘 + Γ𝑚𝑗𝑚𝑘 − Γ𝑚𝑖𝑚𝑗)𝑚𝑖𝑚𝑗≠𝑚𝑘
∈ [0,∞)(𝑑−1)×(𝑑−1).

Furthermore, note 𝑆(⋅|Σ(𝑘)𝑚 ) denote the survival function of a normal random vector with mean vector
0 and covariance matrix Σ(𝑘). We now define :

ℎ𝑘𝑚(y) = ∫
∞

𝑦𝑘
𝑆 ((𝑦𝑖 − 𝑧 + 2Γ𝑚𝑖𝑚𝑘)

𝑘−1
𝑖=1 |Γ𝑘𝑚) 𝑒−𝑧𝑑𝑧

for 2 ≤ 𝑘 ≤ 𝑑. We denote by Σ(𝑘) the summation over all 𝑘-vectors 𝑚 = (𝑚1, … , 𝑚𝑘) with 1 ≤ 𝑚1 <
⋯ < 𝑚𝑘 ≤ 𝑑.
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6.5 Multivariate elliptical dependencies

Let X ∼ E𝑑(𝜇, Σ, 𝜓 ) be an elliptical distributed random vector with cumulative distribution 𝐹 and
marginal 𝐹0, … , 𝐹𝑑−1. Then, the copula 𝐶 of 𝐹 is called an elliptical copula. We denote by 𝜙 the
standard normal distribution function and 𝜙Σ the joint distribution function of X ∼ 𝒩𝑑(0, Σ), where 0
is the 𝑑-dimensional vector composed out of 0. In the same way, we note 𝑡𝜃 the distribution function
of a standard univariate distribution 𝑡 distribution and by 𝑡𝜃,Σ the joint distribution function of the
vector X ∼ 𝑡𝑑(𝜃, 0, Σ). A 𝑑 squared matrix Σ is said to be positively semi definite if for all 𝑢 ∈ ℝ𝑑 we
have :

𝑢⊤Σ𝑢 ≥ 0
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