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Abstract

The Fisher information matrix (FIM) is a key quantity in statistics. However its exact
computation is often not trivial. In particular in many latent variable models, it is intricated due
to the presence of unobserved variables. Several methods have been proposed to approximate
the FIM when it can not be evaluated analytically. Different estimates have been considered, in
particular moment estimates. However some of them require to compute second derivatives of
the complete data log-likelihood which leads to some disadvantages. In this paper, we focus
on the empirical Fisher information matrix defined as an empirical estimate of the covariance
matrix of the score, which only requires to compute the first derivatives of the log-likelihood.
Our contribution consists in presenting a new numerical method to evaluate this empirical Fisher
information matrix in latent variable model when the proposed estimate can not be directly
analytically evaluated. We propose a stochastic approximation estimation algorithm to compute
this estimate as a by-product of the parameter estimate. We evaluate the finite sample size
properties of the proposed estimate and the convergence properties of the estimation algorithm
through simulation studies.

Keywords: Model-based standard error, moment estimate, Fisher identity, stochastic approximation
algorithm
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1 Introduction

The Fisher information matrix (FIM) is a key quantity in statistics as it is required for examples
for evaluating asymptotic precisions of parameter estimates, for building optimality criteria in
experimental designs, for computing Wald test statistics or classical asymptotic distributions in
statistical testing (Van der Vaart A. W. 2000). It also appears more recently in post model selection
inference (Charkhi A. and Claeskens G. 2018), in asymptotic distribution of the likelihood ratio test
statistics when testing variance component in mixed models (Baey C., Cournède P.-H., and Kuhn E.
2019) or as a particular Riemannian metric on complex manifold (Le Brigant A., Preston S. C., and
Puechmorel S. 2021). However its exact computation is often not trivial. This is in particular the
case in many latent variables models, also called incomplete data models, due to the presence of the
unobserved variables. Though these models are increasingly used in many fields of application, such
as in ecophysiology (Technow F. et al. 2015), in genomic (Picard F. et al. 2007) or in ecology (Gloaguen
P. et al. 2014). They especially allow a better consideration of the different variability sources and
when appropriate, a more precise characterization of the known mechanisms at the origin of the data.
When the FIM can not be exactly computed, people either approximate it numerically, for example
by using Monte Carlo technics like developed in the R package MIXFIM (Riviere-Jourdan M.-K. and
Mentre F. 2018) or focus on an estimate of the FIM. The probably most widely used is the observed
FIM (Efron B. and Hinkley D. V. 1978). When it can not be directly computed in latent variable
models, several methods have been proposed to approximate it. Among the most frequently used
approaches are Monte-Carlo methods or iterative algorithms derived from the missing information
principle (Orchard T. and Woodbury M. A. 1972). Indeed according to this principle, the observed
Fisher information matrix can be expressed as the difference between two matrices corresponding
to the complete information and the missing information due to the unobserved variables (see e.g.
(McLachlan G.-J. and Krishnan T. 2008) chapter 4). It enables the development of alternative methods
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to compute the observed FIM: the Louis’s method (Louis T. A. 1982), combined with a Monte Carlo
method or a stochastic approximation algorithm by (Delyon B., Lavielle M., and Moulines E. 1999),
the Oakes method (Oakes D. 1999) or the supplemented Expectation Maximization algorithm (Meng
X.-L. and Rubin D. B. 1991). However as the observed FIM involves the second derivatives of the
observed log-likelihood, all these methods require to compute second derivatives of the complete data
log-likelihood which leads to some disadvantages from a computational point of view. More recently,
(Meng L. and Spall J. C. 2017) proposed an accelerated algorithm based on numerical first order
derivatives of the conditional expectation of the log-likelihood. Another estimate is the empirical
Fisher information matrix. This estimator of the FIM is defined as the moment estimate of the
covariance matrix of the score. It is much less used than the observed Fisher information matrix.
However it has a nice property since it is positive definite, which is not systematically the case for
the latter and it is numerically more interesting because it only requires the calculation of the first
derivatives of the log-likelihood.

In this paper, our contribution consists in presenting a new numerical method to evaluate the
empirical FIM in latent variables model. Indeed, when the proposed estimate can not be directly
analytically evaluated, we propose a stochastic approximation estimation algorithm to compute it,
which provides this estimate of the FIM as a by-product of model parameter estimates.

The paper is organized as follows. In Section 2, we recall the three main FIM estimates and discuss
their immediate properties. In Section 3, we give practical tools for the computation of the empirical
Fisher information matrix in incomplete data models. In particular, we introduce a new stochastic
approximation procedure based on the first derivatives of the complete log-likelihood only and
state its asymptotic properties. In Section 4, we illustrate the finite sample size properties of both
estimators and the convergence properties of the computation algorithm through simulations. The
paper ends by a discussion.

2 Moment estimates of the Fisher information matrix

Let us consider a random vector 𝑌 taking value in 𝒴. Assume 𝑌 admits a density 𝑔(⋅; 𝜃) with respect
to a given common measure 𝜇, depending on some parameter 𝜃 taking values in an open subset Θ of
ℝ𝑑, such that the log-likelihood function log 𝑔 is differentiable on Θ and ‖𝜕𝜃 log 𝑔(𝑦; 𝜃)(𝜕𝜃 log 𝑔(𝑦; 𝜃))𝑡‖
is integrable with respect to 𝑔, where 𝑥 𝑡 stands for the transpose of a vector or a matrix 𝑥. Then, by
definition (see (Lehmann E. L. and Casella G. 2006)), the Fisher information matrix is given for all
𝜃 ∈ Θ by:

𝐼 (𝜃) = 𝐸𝜃 [𝜕𝜃 log 𝑔(𝑌 ; 𝜃)(𝜕𝜃 log 𝑔(𝑌 ; 𝜃))𝑡] . (1)

When this expression can not be analytically evaluated, people are interested in computing an
estimate of the Fisher information matrix. Considering this expression, one can derive a first moment
estimator of the Fisher information matrix based on a 𝑛-sample 𝑦 = (𝑦1, … , 𝑦𝑛) of independent
observations:

𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) =
1
𝑛

𝑛
∑
𝑖=1

𝐼𝑠𝑐𝑜(𝜃, 𝑦𝑖) =
1
𝑛

𝑛
∑
𝑖=1

𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃)(𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃))𝑡.

This estimate is indeed equal to the mean of the Gram matrices of the scores.

Moreover, we can get another expression for the Fisher information (see (Lehmann E. L. and Casella
G. 2006)). If we assume that the set 𝐴 = {𝑦, 𝑔(𝑦; 𝜃) > 0} is independent of 𝜃, that for 𝜇-almost all 𝑦,
𝑔(𝑦; ⋅) is differentiable on Θ, and that the derivative with respect to 𝜃 on the left side of

∫𝑔(𝑦; 𝜃)𝑑𝜇(𝑦) = 1 (2)
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can be obtained by differentiating under the integral sign, then the Fisher information matrix is given
for all 𝜃 ∈ Θ by:

𝐼 (𝜃) = 𝑉𝜃 [𝜕𝜃 log 𝑔(𝑌 ; 𝜃)] . (3)

One can also derive a second estimate from this expression defined as

𝐼𝑛,𝑐𝑜𝑣(𝜃, 𝑦) =
1
𝑛

𝑛
∑
𝑖=1

𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃)(𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃))𝑡 − ̄𝑠(𝜃, 𝑦) ̄𝑠(𝜃, 𝑦)𝑡,

where ̄𝑠(𝜃 , 𝑦) = 1
𝑛 ∑

𝑛
𝑖=1 𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃) (see e.g. (Scott W.-A. 2002)). We emphasize here that the

terminology “empirical Fisher information matrix” is used in the literature for both estimates (see e.g.
(Kunstner F., Hennig P., and Balles L. 2019)).

Moreover if additionally the second derivative with respect to 𝜃 of log 𝑔(𝑦; 𝜃) exists for all 𝑦 and 𝜃 and
the second derivative with respect to 𝜃 of the left side of Equation 2 can be obtained by differentiating
twice under the integral sign (see (Lehmann E. L. and Casella G. 2006)), we have

𝐼 (𝜃) = −𝐸𝜃 [𝜕2𝜃 log 𝑔(𝑌 ; 𝜃)] . (4)

Considering this third expression, we can derive another moment estimator of the Fisher information
matrix based on a 𝑛-sample (𝑦1, … , 𝑦𝑛) of observations, called the observed Fisher information matrix
defined as:

𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦) =
1
𝑛

𝑛
∑
𝑖=1

𝐼𝑜𝑏𝑠(𝜃, 𝑦𝑖) = −1
𝑛

𝑛
∑
𝑖=1

𝜕2𝜃 log 𝑔(𝑦𝑖; 𝜃).

Some detailed discussion about the three estimators above can be found in (Scott W.-A. 2002).

Remark. We emphasize that the estimate 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) is always positive semi-definite, since it is a mean
of Gram matrices, contrary to the other estimates 𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦) and 𝐼𝑛,𝑐𝑜𝑣(𝜃, 𝑦). Moreover assuming 𝑛
sufficiently large allows to prove positive definiteness of 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦). Consider for any nonzero vector
𝑥 the quantity 𝑥 𝑡𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦)𝑥. We have that 𝑥 𝑡𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦)𝑥 = (∑𝑛

𝑖=1 𝑥 𝑡𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃)𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃)𝑡𝑥)/𝑛 =
∑𝑛

𝑖=1(𝑥 𝑡𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃))2/𝑛. Thus, 𝑥 𝑡𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦)𝑥 = 0 implies that 𝑥 𝑡𝜕𝜃 log 𝑔(𝑦𝑖; 𝜃) = 0 for all 1 ≤ 𝑖 ≤ 𝑛. If
𝑛 is sufficiently large, there exist 𝑑 indexes 𝑖1, ..., 𝑖𝑑 such that the family of vectors {𝜕𝜃 log 𝑔(𝑦𝑖𝑙 ; 𝜃), 1 ≤
𝑙 ≤ 𝑑} is linearly independent. Thus this implies that 𝑥 = 0 leading to the results.

Remark. The asymptotical properties of the estimates 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) and 𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦) are straighforward
when considering independent and identically distributed sample (𝑦1, … , 𝑦𝑛). In particular, assuming
standard regularity conditions on 𝑔, it follows directly from the central limit theorem that 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦)
and 𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦) are asymptotically normal. If the variables 𝑌1, … , 𝑌𝑛 are independent not identically
distributed, for example if their distributions depend on some individual covariates which is often the
case in practice, we can also get asymptotic properties for the estimates assuming more strengthed
reguarity conditions by applying for example the Kolmogorov criterion (see e.g. (Feller W. 1968)) for
the consistency and the Lindeberg theorem for the normality result (see theorem 27.2 of (Billingsley
P. 2013)).

Remark. Since both estimators 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) and 𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦) are moment estimates of 𝐼 (𝜃), they are
unbiased for all 𝜃 ∈ Θ. This is not the case for 𝐼𝑛,𝑐𝑜𝑣(𝜃, 𝑦). Regarding the variance, none of both
estimators is better than the other one. This can be highlighted through the following examples.
First consider a Gaussian sample with unknown expectation and fixed variance. Then, the variance
of the estimator 𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦) is zero whereas the variance of the estimator 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) is positive. Second
consider a centered Gaussian sample with unknown variance. Then, the variance of 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) is
smaller than the variance of 𝐼𝑛,𝑜𝑏𝑠(𝜃, 𝑦). Therefore, none of both estimators is more suitable than the
other in general from this point of view.
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3 Computing the estimator 𝐼𝑛,𝑠𝑐𝑜(𝜃) in latent variable model

Let us consider independent random variables 𝑌1, … , 𝑌𝑛. Assume in the sequel that there exist
independent random variables 𝑍1, … , 𝑍𝑛 taking values in𝒵 and a measure 𝜆 on𝒵 such that for each
1 ≤ 𝑖 ≤ 𝑛, the random vector (𝑌𝑖, 𝑍𝑖) admits a parametric probability density function denoted by 𝑓
parametrized by 𝜃 ∈ Θ with respect to 𝜇 × 𝜆 on 𝒴 ×𝒵. We present in this section dedicated tools to
compute the estimator 𝐼𝑛,𝑠𝑐𝑜(𝜃) in latent variable model when it can not be evaluated analytically.

3.1 Analytical expressions in latent variable models

In latent variable models, the estimator 𝐼𝑛,𝑠𝑐𝑜(𝜃, 𝑦) can be expressed using the conditional expectation
as stated in the following proposition.

Proposition 3.1. Assume that for all 𝑦 and all 𝜃 ∈ Θ the function 𝑓 (𝑦 , .; 𝜃) is integrable with respect to 𝜆,
that for all 𝑦 and for 𝜆-almost all 𝑧 the function 𝑓 (𝑦 , 𝑧; ⋅) is differentiable onΘ, that there exists amesurable
function 𝑚 such that ∫𝑚(𝑧)𝜆(𝑑𝑧) < ∞ and for all 𝜃 ∈ Θ and for 𝜆-almost all 𝑧 |𝜕𝜃𝑓 (𝑦 , 𝑧; 𝜃)| ≤ 𝑚(𝑧).
Then for all 𝜃 ∈ Θ and all 𝑛 ∈ ℕ∗:

𝐼𝑛,𝑠𝑐𝑜(𝜃) =
1
𝑛

𝑛
∑
𝑖=1

E𝑍𝑖|𝑌𝑖;𝜃(𝜕𝜃 log 𝑓 (𝑌𝑖, 𝑍𝑖; 𝜃))E𝑍𝑖|𝑌𝑖;𝜃(𝜕𝜃 log 𝑓 (𝑌𝑖, 𝑍𝑖; 𝜃))
𝑡, (5)

where E𝑍|𝑌 ;𝜃 denotes the expectation under the law of 𝑍 conditionally to 𝑌.

We apply the classical Fisher identity (Fisher R.A. 1925) to establish the equality stated in Proposi-
tion 3.1. We refer to Proposition 100 of (Cappé O., Moulines E., and Rydén T. 2005) for the statement
of the Fisher identity. This statement is indeed in the same spirit as the well-known Louis formulae
for the observed Fisher information matrix estimate (Louis T. A. 1982). The result follows directly.

Remark. In some specific cases the conditional expectations involved in the previous proposition
admit exact analytical expressions for example in mixture models which are developed in Section 4
in some simulation studies.

3.2 Computing 𝐼𝑛,𝑠𝑐𝑜(𝜃) using stochastic approximation algorithm

When exact computation of the estimator 𝐼𝑛,𝑠𝑐𝑜(𝜃) is not possible for all 𝜃 ∈ Θ, we propose to
evaluate its value by using a new stochastic algorithm which provides the estimate 𝐼𝑛,𝑠𝑐𝑜( ̄𝜃𝑀𝐿) as a
by-product of the maximum likelihood estimate ̄𝜃𝑀𝐿. More precisely we provide three algorithms:
a first one in the curved exponential family context which requires to simulate the latent variable
from a transition kernel of an ergodic Markov chain and assumes less strong assumptions to get
theoretical convergence result thanks to a truncation on random boundaries step, a second one in
the curved exponential family context which does not include this additional projection step but
requires stronger assumptions to ensure theoretical convergence. This second one and the related
results are presented in Appendix. Finally we provide a third algorithm dedicated to general latent
variables models without any theoretical results as it is usually the case for such kind of methods
(see Section 3.2.3).

3.2.1 Description of the algorithm with truncation on random boundaries in curved
exponential family model

We develop an extension of the stochastic approximation Expectation Maximization algorithm
coupled with a Monte Carlo Markov Chain studied by (Allassonnière S., Kuhn E., and Trouvé A. 2010)
which allows to compute simultaneously the maximum likelihood estimate and the FIM estimate
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proposed in the previous section. We assume in this section that all the individual complete log-
likelihoods belong to the curved exponential family (see (Bickel P. J. and Doksum K. A. 2015)) for
stating the theoretical results. As our estimate involves individual conditional expectations, we have
to consider an extended form of sufficient statistics for the model at the individual level. Indeed, it is
necessary to compute stochastic approximation of each individual sufficient statistic at individual
level since they are required to be able to compute the proposed FIM estimate. This is the main
difference with the usual algorithm. Therefore we introduce the following notations and assumptions.

The individual complete data likelihood function is given for all 1 ≤ 𝑖 ≤ 𝑛 by:

𝑓𝑖(𝑧𝑖; 𝜃) = exp (−𝜓𝑖(𝜃) + ⟨𝑆𝑖(𝑧𝑖), 𝜙𝑖(𝜃)⟩) , (6)

where ⟨⋅, ⋅⟩ denotes the scalar product, 𝑆𝑖 is a function on ℝ𝑑𝑖 taking its values in a subset 𝒮𝑖 of ℝ𝑚𝑖 .

Let us denote for all 1 ≤ 𝑖 ≤ 𝑛 by 𝐿𝑖 the function defined on 𝒮𝑖 × Θ by 𝐿𝑖(𝑠𝑖; 𝜃) ≜ −𝜓𝑖(𝜃) + ⟨𝑠𝑖, 𝜙𝑖(𝜃)⟩
and by 𝐿 ∶ 𝒮 ×Θ → ℝ the function defined as 𝐿(𝑠, 𝜃) = ∑𝑖 𝐿𝑖(𝑠𝑖; 𝜃) with 𝒮 = ∏𝑖 𝒮𝑖 and 𝑠 = (𝑠1, … , 𝑠𝑛).
For sake of simplicity, we omitted all dependency on the observations (𝑦𝑖)1≤𝑖≤𝑛 since the considered
stochasticity relies here on the latent variables.

Finally let us denote by (𝛾𝑘)𝑘≥1 and (𝜀𝑘)𝑘≥1 sequences of positive step sizes, by K a compact set of ℝ𝑑
with 𝑑 = ∑𝑑𝑖 and by (𝒦𝑘) a sequence of increasing compact sets of 𝒮 such that ∪𝒦𝑘 = 𝒮 and for all
𝑘 𝒦𝑘 ⊂ 𝑖𝑛𝑡(𝒦𝑘+1).

Moreover we assume that there exists a function ̂𝜃 ∶ 𝒮 → Θ, such that ∀𝑠 ∈ 𝒮 , ∀𝜃 ∈ Θ, 𝐿(𝑠; ̂𝜃(𝑠)) ≥
𝐿(𝑠; 𝜃).

Initialization step: Initialize arbitrarily for all 1 ≤ 𝑖 ≤ 𝑛 𝑠0𝑖 and 𝜃0. Set 𝜅0 = 𝜁0 = 𝜈0 = 0.

Repeat until convergence the three steps defined at iteration 𝑘 by:

• Simulation step: for 1 ≤ 𝑖 ≤ 𝑛 simulate a realization ̄𝑍𝑖 from a parametric transition kernel Π𝑖
of aMarkov Chain parametrized by the current parameter value 𝜃𝑘−1 and having the conditional
distribution given the observations 𝑌𝑖 denoted by 𝑝𝑖 as stationary distribution

• Stochastic approximation step: compute the quantities for all 1 ≤ 𝑖 ≤ 𝑛

̄𝑠𝑖 = (1 − 𝛾𝑘)𝑠𝑘−1𝑖 + 𝛾𝑘𝑆𝑖(𝑍 𝑘
𝑖 )

where (𝛾𝑘) is a sequence of positive step sizes satisfying ∑𝛾𝑘 = ∞ and ∑𝛾 2𝑘 < ∞.

• Truncation step: Let us denote ̄𝑍 = ( ̄𝑍𝑖), ̄𝑠 = ( ̄𝑠𝑖) and 𝑠 = (𝑠𝑖). If ̄𝑠 ∈ 𝒦𝜅𝑘−1 and ‖ ̄𝑠−𝑠𝑘−1‖ ≤ 𝜀𝜁𝑘−1 ,
then set (𝑍 𝑘, 𝑠𝑘) = ( ̄𝑍 , ̄𝑠), 𝜅𝑘 = 𝜅𝑘−1, 𝜈𝑘 = 𝜈𝑘−1+1, 𝜁𝑘 = 𝜁𝑘−1+1, else set (𝑍 𝑘, 𝑠𝑘) = (�̃� , ̃𝑠) ∈ K×𝒦0,
𝜅𝑘 = 𝜅𝑘−1 + 1, 𝜈𝑘 = 0, 𝜁𝑘 = 𝜁𝑘−1 + Ψ(𝜈𝑘−1) where Ψ ∶ ℕ → ℤ is a function such that Ψ(𝑘) > 𝑘
for any 𝑘 and (�̃� , ̃𝑠) chosen arbitrarily.

• Maximisation step: update of the parameter estimator according to:

𝜃𝑘 = argmax
𝜃

𝑛
∑
𝑖=1

(−𝜓𝑖(𝜃) + ⟨𝑠𝑘𝑖 , 𝜙𝑖(𝜃)⟩) = ̂𝜃(𝑠𝑘)

When convergence is reached, say at iteration𝐾 of the algorithm, evaluate the FIM estimator
according to:

𝐼𝐾𝑛,𝑠𝑐𝑜 =
1
𝑛

𝑛
∑
𝑖=1

Δ̂𝑖 (𝑠𝐾) Δ̂𝑖 (𝑠𝐾)
𝑡

where Δ̂𝑖(𝑠) = −𝜕𝜓𝑖( ̂𝜃(𝑠)) + ⟨𝑠𝑖, 𝜕𝜙𝑖( ̂𝜃(𝑠))⟩ for all 𝑠.
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Remark. Note that the projection step which is done through the truncation procedure on random
boundaries ensures the stability of the algorithm in particular for the theoretical analysis provided
below. More details on this projection step are available in (Andrieu C., Moulines E., and Priouret P.
2005). However, the authors do not provide recommendations on the choice of �̃� and ̃𝑠. In practice,
one could use (�̃� , ̃𝑠) = (𝑍 𝑘−1, 𝑠𝑘−1) or (�̃� , ̃𝑠) = (𝑍 0, 𝑠0), as done in the numerical experiments in
Section 4.

3.2.2 Theoretical convergence property

The theoretical result provided in this section for the sequence (𝜃𝑘) generated by the algorithm with
truncation on random boundaries is based on that of (Allassonnière S., Kuhn E., and Trouvé A. 2010).
Indeed it established convergence guarantees for the FIM estimate obtained as a by-product of that
for the MLE. To that purpose, in addition to the exponential family assumption for each individual
likelihood, we also make the same type of regularity assumptions as those presented in (Allassonnière
S., Kuhn E., and Trouvé A. 2010) at each individual level. These assumptions are detailed in the
appendix section.

We establish our theoretical result for transition kernels (Π𝑖) corresponding to those of the random
walk Metropolis Hastings algorithm (Jarner S. F. and Hansen E. 2000). We denote by (𝑞𝑖) the family
of symmetric densities used to generate the candidate with the proposal distribution. We introduce
additional assumptions required to control the stochastic behavior of the algorithm:

• (H1) There exists a constant 𝑀0 such that

ℒ = {𝑠 ∈ 𝒮 , ⟨∇𝑙( ̂𝜃(𝑠)), ℎ(𝑠)⟩ = 0}

⊂ {𝑠 ∈ 𝒮 , −𝑙( ̂𝜃(𝑠)) < 𝑀0}.

In addition, there exists 𝑀1 ∈ (𝑀0, ∞] such that {𝑠 ∈ 𝒮 , −𝑙( ̂𝜃(𝑠)) ≤ 𝑀1} is a compact set.

• (H2) For all 𝑠 ∈ 𝒮, lim𝑧→∞ 𝑛(𝑧).∇𝑧 log 𝑝(𝑧; ̂𝜃(𝑠)) = −∞ and lim𝑧→∞ sup 𝑛(𝑧).𝑚𝑠(𝑧) < 0 where
where 𝑛(𝑧) = 𝑧/|𝑧| for 𝑧 ≠ 0, and 𝑚𝑠(𝑧) = ∇𝑧𝑝(𝑧; ̂𝜃(𝑠))/𝑝(𝑧; ̂𝜃(𝑠)) with 𝑝(𝑧; 𝜃) = ∏𝑖 𝑝𝑖(𝑧𝑖; 𝜃).

• (H3) The family {𝑞𝑖}1≤𝑖≤𝑛 of symmetric densities is such that, for 𝑖 = 1, … , 𝑛, there exist
constants 𝜂𝑖 > 0 and 𝛿𝑖 < ∞ such that 𝑞𝑖(𝑧) > 𝜂𝑖 for all |𝑧| < 𝛿𝑖.

• (H4) There exist 𝐶 > 1, 𝜌 ∈ (0, 1) and 𝜃0 ∈ Θ such that, for all 𝑧 ∈ ℝ𝑑,

|𝑆(𝑧)| ≤ 𝐶𝑝(𝑧; 𝜃0)−𝜌.

Remark. Assumption (𝐻2) is standard and usually called super-exponentiality property in the
literature (Jarner S. F. and Hansen E. 2000).

Remark. We established our results for transition kernels corresponding to random walk Metropolis
Hastings algorithms which are of common use in practice. We emphasize that our result can be
generalised to more general transition kernels by replacing our assumptions (𝐻2) and (𝐻3) by
assumption (𝐷𝑅𝐼 ) of (Andrieu C., Moulines E., and Priouret P. 2005) which is more generic. The
latter can be verified in practice for more general transition kernels.

Theorem 3.1. Assume that (𝑀1′) and (𝑀2′), (𝑀3) to (𝑀5), (𝑆𝐴𝐸𝑀1) and (𝑆𝐴𝐸𝑀2), (𝐻1) to (𝐻4)
are fulfilled. Let us define ℒ = {𝜃 ∈ Θ, 𝜕𝜃𝑙(𝑦 ; 𝜃) = 0} the set of stationary points of the observed
log-likelihood 𝑙 defined as 𝑙(𝑦 ; 𝜃) = ∑𝑛

𝑖=1 log 𝑔(𝑦𝑖; 𝜃). Then, for all 𝜃0 ∈ Θ, for fixed 𝑛 ∈ ℕ∗, we get:
lim𝑘 𝑑(𝜃𝑘, ℒ) = 0 a.s. and lim𝑘 𝑑(𝐼 𝑘𝑛,𝑠𝑐𝑜, ℐ ) = 0 a.s. where ℐ = {𝐼𝑛,𝑠𝑐𝑜(𝜃), 𝜃 ∈ ℒ}.
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Proof. Let us denote by 𝑆(𝑍) = (𝑆1(𝑍1), … , 𝑆𝑛(𝑍𝑛)) the sufficient statistics of the model we consider
in our approach. Let us also define 𝐻(𝑍 , 𝑠) = 𝑆(𝑍) − 𝑠 and ℎ(𝑠) = E𝑍|𝑌 ; ̂𝜃(𝑠)(𝑆(𝑍)) − 𝑠. The proof is
composed of two steps following for example the lines of (Allassonnière S., Kuhn E., and Trouvé
A. 2010). First we establish the almost sure convergence of the sequence (𝑠𝑘) generated by the
algorithm toward the zero of the function ℎ. Second we deduce the almost sure convergence of the
sequences (𝜃𝑘) and (𝐼 𝑘𝑛,𝑠𝑐𝑜) toward the set of critical points of the observed log-likelihood and the set
ℐ respectively.

To prove the first step we apply Theorem 5.5 of (Andrieu C., Moulines E., and Priouret P. 2005).
Therefore we have to verify that their four conditions denoted (𝐴1) to (𝐴4) are fulfilled. Our proof
will follow the same global strategy as for example the one of Theorem 1 in (Kuhn E., Matias C., and
Rebafka T. 2020). We get first that condition (𝐴1) is satisfied by applying Lemma 2 of (Delyon B.,
Lavielle M., and Moulines E. 1999). Indeed our assumptions (𝑀1′) and (𝑀2′) imply that assumptions
(𝑀1) and (𝑀2) of (Delyon B., Lavielle M., and Moulines E. 1999) are satisfied. These assumptions
(𝑀1′) and (𝑀2′) focus on expressions and regularity properties of the individual likelihood functions
and the corresponding sufficient statistics for each index 𝑖 ∈ {1, … , 𝑛}. The implication above follows
by linearity of the log-likelihood function. Thenwe get that assumptions (𝐻1), (𝑀1)−(𝑀5), (𝑆𝐴𝐸𝑀2)
ensured that condition (𝐴1) is satisfied. To prove assumptions (𝐴2) and (𝐴3), we will follow the
strategy of (Allassonnière S., Kuhn E., and Trouvé A. 2010) to handle the difficulty of finding a
common drift function 𝑉 for the family of posterior distributions indexed by 𝑠 ∈ 𝒮. Therefore we
will construct first a family of drift functions (𝑉𝑠) using Proposition 6.1 of (Andrieu C., Moulines
E., and Priouret P. 2005), which stated drift conditions, called (𝐷𝑅𝐼 ), easy to check in practice. To
prove condition (𝐷𝑅𝐼1) for each kernels, we use Theorem 4.1 and Theorem 4.3 of (Jarner S. F. and
Hansen E. 2000) which stated that assumptions (𝐻2),(𝐻3) and (𝐻4) imply that Equations (6.1)
and (6.3) of (𝐷𝑅𝐼1) are satisfied with 𝑚 = 1 and 𝑉𝑠(𝑧) = 𝑝(𝑧; ̂𝜃(𝑠))−𝜌 with 𝜌 given by (𝐻4). Then
the common drift function is defined by 𝑉 (𝑧) = 𝑝(𝑧; 𝜃0)−𝜌 using assumption (𝐻4). Thus for any
compact 𝒦 of Θ, there exist constants 𝑐𝒦 > 0 and 𝐶𝒦 > 0 such that for all 𝜃 ∈ 𝒦 and for all 𝑧,
𝑐𝒦𝑉 (𝑧) ≤ 𝑝(𝑧; ̂𝜃(𝑠))−𝜌 ≤ 𝐶𝒦𝑉 (𝑧). Therefore Equations (6.1) and (6.3) are satisfied for this common
drift function 𝑉. Equation (6.2) follows also from Theorem 2.1 of (Jarner S. F. and Hansen E. 2000)
which concludes the proof of (𝐷𝑅𝐼1). The first part of (𝐷𝑅𝐼2) is ensured by assumption (𝐻4). The
second part is satisfied directly with Lipschitz exponent 𝛽 equal to 1 in our case. Finally assumption
(𝐷𝑅𝐼3) is satisfied also with 𝛽 = 1 in our framework. This proof is obtained by using the usual
strategy of splitting the whole space in four parts depending on the acceptance region and on the
rejection region (see the proof of Lemma 4.7 in (Fort G. et al. 2015) for example) and the fact that
the function ̂𝜃 is twice continuously differentiable. Finally assumption (𝑆𝐴𝐸𝑀1) allows to choose a
sequence (𝜀𝑘) such that (𝐴4) is satisfied (see constructive details in (Andrieu C., Moulines E., and
Priouret P. 2005) after the statement of assumption (𝐴4)). This concludes the proof of the first step.

The function ̂𝜃 being continuous, we get that lim𝑘 𝑑(𝜃𝑘, ℒ) = 0 applying Lemma 2 of (Delyon B.,
Lavielle M., and Moulines E. 1999). Moreover we get that for 1 ≤ 𝑖 ≤ 𝑛, each sequence (𝑠𝑘𝑖 ) converges
almost surely toward E𝑍𝑖|𝑌𝑖;𝜃(𝑆𝑖(𝑍𝑖)). Since assumption (𝑀2′) ensures that for all 1 ≤ 𝑖 ≤ 𝑛 the
functions 𝜓𝑖 and 𝜙𝑖 are twice continuously differentiable and assumption (𝑀5) ensures that the
function ̂𝜃 is continuously differentiable, the function Φ𝑛 defined by Φ𝑛(𝑠𝑘) =

1
𝑛 ∑

𝑛
𝑖=1 Δ̂𝑖(𝑠𝑘)Δ̂𝑖(𝑠𝑘) is

continuous. Therefore we get that lim𝑘 𝑑(𝐼 𝑘𝑛,𝑠𝑐𝑜, ℐ ) = 0 which concludes the whole proof.

3.2.3 Description of the algorithm for general latent variables models

In general settings, the SAEM algorithm can yet be applied to approximate numerically the maximum
likelihood estimate of the model parameter. Nevertheless there are no more theoretical guarantees
of convergence for the algorithm. However we propose an extended version of our algorithm which
allows to get an estimate of the Fisher information matrix as a by-product of the estimation algorithm.
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Initialization step: Initialize arbitrarily Δ0
𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, 𝑄0 and 𝜃0.

Repeat until convergence the three steps defined at iteration 𝑘 by:

• Simulation step: for 1 ≤ 𝑖 ≤ 𝑛 simulate a realization 𝑍 𝑘
𝑖 directly from the conditional

distribution given the observations 𝑌𝑖, denoted by 𝑝𝑖, or from a transition kernel of an ergodic
Markov Chain having 𝑝𝑖 as stationary distribution, using the current parameter 𝜃𝑘−1.

• Stochastic approximation step: compute the quantities for all 1 ≤ 𝑖 ≤ 𝑛

𝑄𝑘(𝜃) = (1 − 𝛾𝑘)𝑄𝑘−1(𝜃) + 𝛾𝑘
𝑛
∑
𝑖=1

log 𝑓 (𝑦𝑖, 𝑍 𝑘
𝑖 ; 𝜃)

Δ𝑘
𝑖 = (1 − 𝛾𝑘)Δ𝑘−1

𝑖 + 𝛾𝑘𝜕𝜃 log 𝑓 (𝑦𝑖, 𝑍 𝑘
𝑖 ; 𝜃𝑘−1)

• Maximisation step: update of the parameter estimator according to:

𝜃𝑘 = argmax
𝜃

𝑄𝑘(𝜃).

When convergence is reached, say at iteration𝐾 of the algorithm, evaluate the FIM estimator
according to:

𝐼𝐾𝑛,𝑠𝑐𝑜 =
1
𝑛

𝑛
∑
𝑖=1

Δ𝐾
𝑖 (Δ𝐾

𝑖 )𝑡.

We illustrate through simulations in a nonlinearmixed effects model the performance of this algorithm
in Section 4.2.

4 Simulation study

4.1 Asymptotic properties of the estimators 𝐼𝑛,𝑠𝑐𝑜(𝜃) and 𝐼𝑛,𝑜𝑏𝑠(𝜃)

In this section, we investigate the properties of the estimators 𝐼𝑛,𝑠𝑐𝑜(𝜃) and 𝐼𝑛,𝑜𝑏𝑠(𝜃) when the sample
size 𝑛 grows.

4.1.1 Simulation settings

First we consider the following linear mixed effects model 𝑦𝑖𝑗 = 𝛽 + 𝑧𝑖 + 𝜀𝑖𝑗, where 𝑦𝑖𝑗 ∈ ℝ denotes
the 𝑗 𝑡ℎ observation of individual 𝑖, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝐽, 𝑧𝑖 ∈ ℝ the unobserved random effect of
individual 𝑖 and 𝜀𝑖𝑗 ∈ ℝ the residual term. The random effects (𝑧𝑖) are assumed independent and
identically distributed such that 𝑧𝑖 ∼

𝑖.𝑖.𝑑.
𝒩 (0, 𝜂2), the residuals (𝜀𝑖𝑗) are assumed independent and

identically distributed such that 𝜀𝑖𝑗 ∼
𝑖.𝑖.𝑑.

𝒩 (0, 𝜎2) and the sequences (𝑧𝑖) and (𝜀𝑖𝑗) are assumed mutually

independent. Here, the model parameters are 𝜃 = (𝛽, 𝜂2, 𝜎2). We set 𝛽 = 3, 𝜂2 = 2, 𝜎2 = 5 and 𝐽 = 12.

Second we consider the following Poisson mixture model where the distribution of each observation
𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑛, depends on a state variable 𝑧𝑖 which is latent leading to 𝑦𝑖|𝑧𝑖 = 𝑘 ∼ 𝒫 (𝜆𝑘) with
𝑃(𝑧𝑖 = 𝑘) = 𝛼𝑘 and ∑𝐾

𝑘=1 𝛼𝑘 = 1. The model parameters are 𝜃 = (𝜆1, … , 𝜆𝐾, 𝛼1, … , 𝛼𝐾−1). For the
simulation study, we consider a mixture of 𝐾 = 3 components, and the following values for the
parameters 𝜆1 = 2, 𝜆2 = 5, 𝜆3 = 9, 𝛼1 = 0.3 and 𝛼2 = 0.5.

For each model, we generate 𝑀 = 500 datasets for different sample sizes 𝑛 ∈ {20, 100, 500}. As a first
step, we assume that the true parameter values, denoted by 𝜃⋆, are known in order to investigate the
asymptotic properties of both 𝐼𝑛,𝑠𝑐𝑜 and 𝐼𝑛,𝑜𝑏𝑠 without adding extra noise induced by the estimation
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of the parameters. Hence, for each value of 𝑛 and for each 1 ≤ 𝑚 ≤ 𝑀, we derive 𝐼 (𝑚)𝑛,𝑠𝑐𝑜(𝜃⋆) and
𝐼 (𝑚)𝑛,𝑜𝑏𝑠(𝜃

⋆). The estimators 𝐼𝑛,𝑠𝑐𝑜(𝜃⋆) and 𝐼𝑛,𝑜𝑏𝑠(𝜃⋆) can be computed explicitly in bothmodels by applying
Equation 5 and Louis’ formula (Louis T. A. 1982) (see R functions provided in the Appendix section).
We then compute the empirical bias and the root mean squared deviation of each component (ℓ, ℓ′)
of the estimated matrix as:

1
𝑀

𝑀
∑
𝑚=1

𝐼 (𝑚)𝑛,𝑠𝑐𝑜,ℓ,ℓ′(𝜃
⋆) − 𝐼ℓ,ℓ′(𝜃⋆) and

√

1
𝑀

𝑀
∑
𝑚=1

(𝐼 (𝑚)𝑛,𝑠𝑐𝑜,ℓ,ℓ′(𝜃⋆) − 𝐼ℓ,ℓ′(𝜃⋆))
2
.

In the previous quantities, 𝐼 (𝜃⋆) is explicit in the linear mixed effects model and approximated by a
Monte-Carlo estimation based on a sample of size 108 in the Poisson mixture model. The results are
presented in Table 1 and Table 2 for the linear mixed effects model and in Table 3 and Table 4 for the
mixture model. In a second step, we use the linear mixed effects model to look at what happens when
the parameter 𝜃 is unknown and the estimation of the Fisher information matrix requires to compute
an estimate ̂𝜃𝑛. We use the datasets simulated with 𝑛 = 500 and we compute the 𝑀 = 500 asymptotic
confidence intervals of the three model parameters. We then deduce empirical coverage rates for the
following nominal rates 1 − 𝛼 ∈ {0.90, 0.95, 0.99} by using the diagonal terms of either the inversed
𝐼 (𝑚)𝑛,𝑠𝑐𝑜(𝜃⋆) (resp. 𝐼

(𝑚)
𝑛,𝑜𝑏𝑠(𝜃

⋆)) or the inversed 𝐼 (𝑚)𝑛,𝑠𝑐𝑜( ̂𝜃𝑛) (resp. 𝐼
(𝑚)
𝑛,𝑜𝑏𝑠( ̂𝜃𝑛)). The results are depicted in Table 5

and Table 6.

## 1- R script for studying the asymptotic properties of Iobs and Isco in the
## linear mixed effects model
## -----------------------------------------------------------------------------

library(lme4)

nsim <- 500 # number of replicates
seq.n <- c(20,100,500) # number of individuals
j <- 12 # number of observations per individual

## parameter values
beta <- 3
sigma2 <- 5
eta2 <- 2
theta.true <- matrix(c(beta,eta2,sigma2),ncol=1)

## R objects to store estimations

resIobs.theta.true <- array(NA,dim=c(3,3,nsim,length(seq.n)))
resIsco.theta.true <- array(NA,dim=c(3,3,nsim,length(seq.n)))
resIobs.theta.est <- array(NA,dim=c(3,3,nsim,length(seq.n)))
resIsco.theta.est <- array(NA,dim=c(3,3,nsim,length(seq.n)))

EstF11.true <- c()
EstF22.true <- c()
EstF33.true <- c()
EstF12.true <- c()
EstF13.true <- c()
EstF23.true <- c()
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EstF11.est <- c()
EstF22.est <- c()
EstF33.est <- c()
EstF12.est <- c()
EstF13.est <- c()
EstF23.est <- c()

beta.est <- c()
eta2.est <- c()
sigma2.est <- c()

## loop executing the nsim replicates of the experiment

for (l in 1:length(seq.n)){

n <- seq.n[l]

beta.est.n <- c()
eta2.est.n <- c()
sigma2.est.n <- c()

for (k in 1:nsim){

## data simulation
random <- rnorm(n,0,sqrt(eta2))
residual <- rnorm(n*j,0,sqrt(sigma2))
randompop <- rep(random,j)
id <- rep(seq(1,n),j)
obs <- beta+randompop+residual
datamat <- matrix(obs,n,j)

## evaluation of the FIM estimators in the true parameter values

resIobs.theta.true[,,k,l] <- Iobs_LMM(datamat,beta,sigma2,eta2)
resIsco.theta.true[,,k,l] <- Isco_LMM(datamat,beta,sigma2,eta2)

## evaluation of the FIM estimators in the estimated parameter values

est.mle <- lmer(obs~(1|id),REML = F)
variances <- as.data.frame(VarCorr(est.mle))
beta.est.n <- c(beta.est.n,est.mle@beta)
eta2.est.n <- c(eta2.est.n,variances[1,'vcov'])
sigma2.est.n <- c(sigma2.est.n,variances[2,'vcov'])

resIobs.theta.est[,,k,l] <- Iobs_LMM(datamat,est.mle@beta,
variances[2,'vcov'],

variances[1,'vcov'])
resIsco.theta.est[,,k,l] <- Isco_LMM(datamat,est.mle@beta,

variances[2,'vcov'],
variances[1,'vcov'])
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}

EstF11.true <- c(EstF11.true,c(resIsco.theta.true[1,1,,l],
resIobs.theta.true[1,1,,l]))

EstF22.true <- c(EstF22.true,c(resIsco.theta.true[2,2,,l],
resIobs.theta.true[2,2,,l]))

EstF33.true <- c(EstF33.true,c(resIsco.theta.true[3,3,,l],
resIobs.theta.true[3,3,,l]))

EstF12.true <- c(EstF12.true,c(resIsco.theta.true[1,2,,l],
resIobs.theta.true[1,2,,l]))

EstF13.true <- c(EstF13.true,c(resIsco.theta.true[1,3,,l],
resIobs.theta.true[1,3,,l]))

EstF23.true <- c(EstF23.true,c(resIsco.theta.true[2,3,,l],
resIobs.theta.true[2,3,,l]))

EstF11.est <- c(EstF11.est,c(resIsco.theta.est[1,1,,l],
resIobs.theta.est[1,1,,l]))

EstF22.est <- c(EstF22.est,c(resIsco.theta.est[2,2,,l],
resIobs.theta.est[2,2,,l]))

EstF33.est <- c(EstF33.est,c(resIsco.theta.est[3,3,,l],
resIobs.theta.est[3,3,,l]))

EstF12.est <- c(EstF12.est,c(resIsco.theta.est[1,2,,l],
resIobs.theta.est[1,2,,l]))

EstF13.est <- c(EstF13.est,c(resIsco.theta.est[1,3,,l],
resIobs.theta.est[1,3,,l]))

EstF23.est <- c(EstF23.est,c(resIsco.theta.est[2,3,,l],
resIobs.theta.est[2,3,,l]))

beta.est <- c(beta.est,rep(beta.est.n,2))
eta2.est <- c(eta2.est,rep(eta2.est.n,2))
sigma2.est <- c(sigma2.est,rep(sigma2.est.n,2))

}

DataRes <- data.frame(EstF11.true=EstF11.true, EstF22.true=EstF22.true,
EstF33.true=EstF33.true, EstF12.true=EstF12.true,
EstF13.true=EstF13.true, EstF23.true=EstF23.true,
EstF11.est=EstF11.est, EstF22.est=EstF22.est,
EstF33.est=EstF33.est, EstF12.est=EstF12.est,
EstF13.est=EstF13.est, EstF23.est=EstF23.est,
beta.est=beta.est, eta2.est=eta2.est,
sigma2.est=sigma2.est,
Estimate=rep(c(rep('I n,sco',nsim),rep('I n,obs',nsim)),

length(seq.n)),
n=rep(seq.n,each=nsim*2)

)

save(DataRes,file="Rfiles/simusLMM.Rdata")
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## 2- R script for studying the asymptotic properties of Iobs and Isco in the
## Poisson mixture model
## -----------------------------------------------------------------------------

nbsim <- 500 # number of replicates
alpha <- c(0.3,0.5) # mixture weights of the first K-1 components
lambda <- c(2,5,9) # parameter values of the K Poisson distributions
seq.n <- c(20,100,500) # sample size

Iobs.theta.est <- array(NA,dim=c(5,5,nbsim))
Isco.theta.est <- array(NA,dim=c(5,5,nbsim))
est.lambda <- matrix(NA,3,nbsim)
est.alpha <- matrix(NA,2,nbsim)

for (n in seq.n){
for (j in 1:nbsim){

## Data simulation

y <- sim_poisson_mixture(n,lambda,alpha)

## Parameter estimation

em.est <- em_poisson_mixture(y,3)
est.lambda[,j] <- em.est[[1]]
est.alpha[,j] <- em.est[[2]]

## Computation of Isco and Iobs in the MLE value of the parameter

res.theta.est <- fisher_estimation_poisson_mixture(y, est.lambda[,j],
est.alpha[,j])

Iobs.theta.est[,,j] <- res.theta.est$Iobs
Isco.theta.est[,,j] <- res.theta.est$Isco

}

ResSim <- list(n=n,Isco=Isco.theta.est,Iobs=Iobs.theta.est,lambda=lambda,
alpha=alpha)

filename <- paste('Rfiles/simusMixt_n',n,'.Rdata',sep="")
save(ResSim,file=filename)

}

4.1.2 Results

From Table 1, Table 2, Table 3 and Table 4, we observe that whatever the model and whatever the
components of 𝐼𝑛,𝑠𝑐𝑜(𝜃⋆) and 𝐼𝑛,𝑜𝑏𝑠(𝜃⋆), the bias is very small even for small values of 𝑛. Note that in the
linear mixed effects model the second derivative with respect to parameter 𝛽 is deterministic, which
explains why the bias and the dispersion of the estimations 𝐼𝑛,𝑜𝑏𝑠(𝜃⋆) are zero for every value of 𝑛.
The bias and the standard deviation decrease as 𝑛 increases overall, which illustrates the consistency
of both M-estimators. The distributions of the normalized estimations √𝑛 (𝐼

(𝑚)
𝑛,𝑠𝑐𝑜(𝜃⋆) − 𝐼 (𝜃⋆)) and

√𝑛 (𝐼
(𝑚)
𝑛,𝑜𝑏𝑠(𝜃

⋆) − 𝐼 (𝜃⋆)) are also represented when 𝑛 = 500 for some components of the matrices in
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Figure 1 (linearmixed effectsmodel) and Figure 2 (Poissonmixturemodel). The empirical distributions
have the shape of Gaussian distributions and illustrate the asymptotic normality of the two estimators.
The numerical results highlight that neither 𝐼𝑛,𝑠𝑐𝑜(𝜃⋆) nor 𝐼𝑛,𝑜𝑏𝑠(𝜃⋆) is systematically better than the
other one in terms of bias and asymptotic covariance matrix. In the same model, different behaviors
can be observed depending on the components of the parameter vector.
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Figure 1: Linear mixed effects model. Kernel density estimates of the normalized values of some
components of the estimated Fisher information matrix based on the score (𝐼𝑛,𝑠𝑐𝑜) and of the observed
Fisher information matrix (𝐼𝑛,𝑜𝑏𝑠) computed in the true parameter values from the 500 simulated
datasets with n=500.

Table 1: Linear mixed effects model. Empirical bias to the Fisher Information matrix of 𝐼𝑛,𝑠𝑐𝑜 and 𝐼𝑛,𝑜𝑏𝑠
computed in the true parameter values for different values of n.

n=20 n=100 n=500

Isco Iobs Isco Iobs Isco Iobs

(β,β) 0.00552 0.00000 0.00075 0.00000 -0.00064 0.00000

(η2,η2) 0.00325 0.00228 -0.00138 0.00031 -0.00122 -0.00027

(σ2,σ2) -0.00314 0.00009 0.00002 0.00077 -0.00027 -0.00013

(β,η2) -0.00241 0.00255 -0.00040 -0.00062 -0.00058 -0.00133

(β,σ2) 0.00360 0.00021 -0.00006 -0.00005 -0.00043 -0.00011

(η2,σ2) -0.00050 0.00019 0.00013 0.00003 0.00002 -0.00002
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Figure 2: Poisson mixture model. Kernel density estimates of the normalized values of some compo-
nents of the estimated Fisher information matrix based on the score (𝐼𝑛,𝑠𝑐𝑜) and of the observed Fisher
information matrix (𝐼𝑛,𝑜𝑏𝑠) computed in the true parameter values from the 500 simulated datasets
with n=500.

Table 2: Linear mixed effects model. Empirical squared deviation to the Fisher Information matrix of
𝐼𝑛,𝑠𝑐𝑜 and 𝐼𝑛,𝑜𝑏𝑠 computed in the true parameter values for different values of n.

n=20 n=100 n=500

Isco Iobs Isco Iobs Isco Iobs

(β,β) 0.13433 0.00000 0.05843 0.00000 0.02634 0.00000

(η2,η2) 0.07916 0.05559 0.02931 0.02418 0.01372 0.01090

(σ2,σ2) 0.08201 0.04177 0.03982 0.01946 0.01729 0.00819

(β,η2) 0.09730 0.05970 0.04380 0.02786 0.01898 0.01145

(β,σ2) 0.07115 0.00497 0.03100 0.00232 0.01378 0.00095

(η2,σ2) 0.02907 0.00463 0.01308 0.00201 0.00639 0.00091

Table 3: Poisson mixture model. Empirical bias to the Fisher Information matrix of 𝐼𝑛,𝑠𝑐𝑜 and 𝐼𝑛,𝑜𝑏𝑠
computed in the true parameter values for different values of n.

n=20 n=100 n=500

Isco Iobs Isco Iobs Isco Iobs

(λ2,λ2) 0.00009 -0.00025 -0.00003 0.00025 0.00008 -0.00029
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n=20 n=100 n=500

Isco Iobs Isco Iobs Isco Iobs

(λ3,λ3) 0.00005 0.00047 -0.00023 -0.00035 0.00008 0.00015

(α1,α1) 0.05981 0.05981 -0.04072 -0.04072 0.01849 0.01849

(α2,α2) 0.04756 0.04756 -0.04006 -0.04006 0.01205 0.01205

(λ2,λ3) 0.00009 0.00009 -0.00007 -0.00007 0.00002 0.00002

(λ3,α2) -0.00220 0.00082 0.00284 -0.00061 -0.00077 0.00041

Table 4: Poisson mixture model. Empirical squared deviation to the Fisher Information matrix of
𝐼𝑛,𝑠𝑐𝑜 and 𝐼𝑛,𝑜𝑏𝑠 computed in the true parameter values for different values of n.

n=20 n=100 n=500

Isco Iobs Isco Iobs Isco Iobs

(λ2,λ2) 0.00717 0.02238 0.00310 0.00996 0.00141 0.00463

(λ3,λ3) 0.01523 0.00872 0.00664 0.00403 0.00299 0.00167

(α1,α1) 1.20192 1.20192 0.52483 0.52483 0.23129 0.23129

(α2,α2) 1.05566 1.05566 0.46762 0.46762 0.20510 0.20510

(λ2,λ3) 0.00295 0.00295 0.00132 0.00132 0.00059 0.00059

(λ3,α2) 0.11013 0.03428 0.04614 0.01561 0.02137 0.00712

Table 5 and Table 6 show that the empirical coverage rates computed from 𝐼𝑛,𝑠𝑐𝑜 and 𝐼𝑛,𝑜𝑏𝑠 in the
linear mixed effects model are close to the nominal values, which corroborates the relevance of
both estimators. Moreover there is little difference between the results obtained when using 𝐼𝑛,𝑠𝑐𝑜
or 𝐼𝑛,𝑜𝑏𝑠 to estimate the Fisher information matrix. When the parameter value is unknown, the
uncertainty related to the parameter estimation leads to a deterioration of the coverage rates. Still,
this deterioration diminishes when 𝑛 increases.

Table 5: Linear mixed effects model. Comparison of the coverage rates computed from both estimates
of the Fisher information matrix in either the true or the estimated parameter values when n=100.

1-α Fisher est. θ β η2 σ2

Known 0.992 0.98 0.984
Isco

Estimated 0.988 0.974 0.992

Known 0.99 0.982 0.982

0.99

Iobs

Estimated 0.986 0.972 0.988

Known 0.964 0.946 0.948
Isco

Estimated 0.944 0.936 0.944
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1-α Fisher est. θ β η2 σ2

Known 0.96 0.944 0.948

0.95

Iobs

Estimated 0.938 0.942 0.944

Known 0.904 0.914 0.876
Isco

Estimated 0.89 0.906 0.884

Known 0.892 0.916 0.89

0.9

Iobs

Estimated 0.882 0.89 0.872

Table 6: Linear mixed effects model. Comparison of the coverage rates computed from both estimates
of the Fisher information matrix in either the true or the estimated parameter values when n=500.

1-α Fisher est. θ β η2 σ2

Known 0.996 0.986 0.984
Isco

Estimated 0.996 0.986 0.992

Known 0.996 0.986 0.984

0.99

Iobs

Estimated 0.996 0.988 0.986

Known 0.952 0.954 0.952
Isco

Estimated 0.95 0.956 0.944

Known 0.952 0.956 0.952

0.95

Iobs

Estimated 0.95 0.95 0.946

Known 0.922 0.914 0.906
Isco

Estimated 0.916 0.898 0.91

Known 0.918 0.912 0.908

0.9

Iobs

Estimated 0.914 0.888 0.912

4.2 Asymptotic properties of the stochastic approximation algorithm

We now investigate the properties of our algorithm with truncation on random boundaries in
the curved exponential family when the number of iterations grows (Section 4.2.1) and the good
performance of its extended version in more general latent variable models (Section 4.2.2). We also
present a short comparison with existing methods (Section 4.2.3).

4.2.1 In curved exponential family models

We consider the following nonlinear mixed effects model which is widely used in pharmacokinetics
for describing the evolution of drug concentration over time:

𝑦𝑖𝑗 = 𝑔𝑖(𝑡𝑖𝑗, 𝑧𝑖) + 𝜀𝑖𝑗, (7)

where 𝑧𝑖 = (log 𝑘𝑎𝑖, log 𝐶𝑙𝑖, log 𝑉𝑖)′ are individual random parameters such that

log 𝑘𝑎𝑖 = log(𝑘𝑎) + 𝜂𝑖,1, log 𝐶𝑙𝑖 = log(𝐶𝑙) + 𝜂𝑖,2, log 𝑉𝑖 = log(𝑉 ) + 𝜂𝑖,3,
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and

𝑔𝑖(𝑡𝑖𝑗, 𝑧𝑖) =
𝑑𝑖𝑘𝑎𝑖

𝑉𝑖𝑘𝑎𝑖 − 𝐶𝑙𝑖
[𝑒

− 𝐶𝑙𝑖
𝑉𝑖
𝑡𝑖𝑗 − 𝑒−𝑘𝑎𝑖𝑡𝑖𝑗] .

For all 1 ≤ 𝑖 ≤ 𝑛 and all 1 ≤ 𝑗 ≤ 𝐽, 𝑦𝑖𝑗 denotes the measure of drug concentration on individual 𝑖 at
time 𝑡𝑖𝑗, 𝑑𝑖 the dose of drug administered to individual 𝑖, and 𝑉𝑖, 𝑘𝑎𝑖 and 𝐶𝑙𝑖 respectively denote the
volume of the central compartment, the drug’s absorption rate constant and the drug’s clearance of
individual 𝑖. The terms 𝜂𝑖 = (𝜂𝑖,1, 𝜂𝑖,2, 𝜂𝑖,3)′ ∈ ℝ3 are unobserved random effects which are assumed
independent and identically distributed such that 𝜂𝑖 ∼

𝑖.𝑖.𝑑.
𝒩 (0, Ω), where Ω = diag(𝜔2

𝑘𝑎, 𝜔
2
𝐶𝑙, 𝜔

2
𝑉),

the residuals (𝜀𝑖𝑗) are assumed independent and identically distributed such that 𝜀𝑖𝑗 ∼
𝑖.𝑖.𝑑.

𝒩 (0, 𝜎2)
and the sequences (𝜂𝑖) and (𝜀𝑖𝑗) are assumed mutually independent. Here, the model parameter is
𝜃 = (𝑘𝑎, 𝑉 , 𝐶𝑙, 𝜔2

𝑘𝑎, 𝜔
2
𝑉, 𝜔

2
𝐶𝑙, 𝜎

2).

In this model, as in a large majority of nonlinear mixed effects models, the likelihood does not
have any analytical expression. As a consequence, neither the Fisher Information Matrix, nor the
estimators 𝐼𝑛,𝑠𝑐𝑜(𝜃), 𝐼𝑛,𝑜𝑏𝑠(𝜃) have explicit expressions. However, as the complete data log-likelihood
is explicit, stochastic approximations of 𝐼𝑛,𝑠𝑐𝑜(𝜃), 𝐼𝑛,𝑜𝑏𝑠(𝜃) can be implemented. Note moreover that
this model belongs to the curved exponential family as defined in Equation 6 with

𝑆𝑖(𝑧𝑖) = (
𝐽
∑
𝑗=1

(𝑦𝑖𝑗𝑔𝑖(𝑡𝑖𝑗, 𝑧𝑖)), (log 𝑘𝑎𝑖), (log 𝐶𝑙𝑖), (log 𝑉𝑖), (log 𝑘𝑎𝑖)2, (log 𝐶𝑙𝑖)2, (log 𝑉𝑖)2)
′

𝜙𝑖(𝜃) = ( 1
2𝜎2

,
log 𝑘𝑎
𝜔2
𝑘𝑎

,
log 𝐶𝑙
𝜔2
𝐶𝑙

,
log 𝑉
𝜔2
𝑉

, − 1
2𝜔2

𝑘𝑎
, − 1

2𝜔2
𝐶𝑙
, − 1

2𝜔2
𝑉
) ,

𝜓𝑖(𝜃) =
1
2
(
(log 𝑘𝑎)2

𝜔2
𝑘𝑎

+
(log 𝐶𝑙)2

𝜔2
𝐶𝑙

+
(log 𝑉 )2

𝜔2
𝑉

) .

The algorithm described in Section 3.2.1 can therefore be easily implemented to estimate 𝜃 and the
Fisher information matrix simultaneously (see R function provided in the Appendix section).

We take the following values for the parameters 𝑉 = 31, 𝑘𝑎 = 1.6, 𝐶𝑙 = 2.8, 𝜔2
𝑉 = 0.40, 𝜔2

𝑘𝑎 = 0.40,
𝜔2
𝐶𝑙 = 0.40 and 𝜎2 = 0.75. We consider the same dose 𝑑𝑖 = 320 and the same observation times (in

hours): 0.25,0.5, 1, 2, 3.5, 5, 7, 9, 12, 24 for all the individuals. We simulate one dataset with 𝑛 = 100
individuals under model specified by Equation 7. On this simulated dataset, we run 𝑀 = 500 times
the stochastic approximation algorithm described in Section 3.2.1 for computing 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃) together
with ̂𝜃 and the algorithm of (Delyon B., Lavielle M., and Moulines E. 1999) for computing 𝐼𝑛,𝑜𝑏𝑠( ̂𝜃). We
perform 𝐾 = 3000 iterations in total for each algorithm by setting 𝛾𝑘 = 0.95 for 1 ≤ 𝑘 ≤ 1000 (burn in
iterations) and 𝛾𝑘 = (𝑘−1000)−3/5 otherwise, 𝜀𝑘 = 5.104𝛾 2/5𝑘 and𝒦𝜅 = [−20−𝜅, 20+𝜅]6×[0, 5.104+𝜅].
At any iteration, we compute the empirical relative bias and the empirical relative standard deviation
of each component (ℓ, ℓ′) of 𝐼𝑛,𝑠𝑐𝑜 defined respectively as:

1
𝑀

𝑀
∑
𝑚=1

̂
𝐼 (𝑘,𝑚)𝑛,𝑠𝑐𝑜,ℓ,ℓ′ − 𝐼 ⋆𝑛,𝑠𝑐𝑜,ℓ,ℓ′

𝐼 ⋆𝑛,𝑠𝑐𝑜,ℓ,ℓ′
and

√√√√√√√√
√

1
𝑀

𝑀
∑
𝑚=1

(
̂
𝐼 (𝑘,𝑚)𝑛,𝑠𝑐𝑜,ℓ,ℓ′ − 𝐼 ⋆𝑛,𝑠𝑐𝑜,ℓ,ℓ′

𝐼 ⋆𝑛,𝑠𝑐𝑜,ℓ,ℓ′
)

2

where
̂
𝐼 (𝑘,𝑚)𝑛,𝑠𝑐𝑜 denotes the estimated value of 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃) at iteration 𝑘 of the 𝑚𝑡ℎ algorithm. We compute

the same quantities for 𝐼𝑛,𝑜𝑏𝑠. As the true values of 𝐼 ⋆𝑛,𝑠𝑐𝑜 = 𝐼𝑛,𝑠𝑐𝑜(𝜃⋆) and 𝐼 ⋆𝑛,𝑜𝑏𝑠 = 𝐼𝑛,𝑜𝑏𝑠(𝜃⋆) are not
known, they are estimated by Monte-Carlo integration based on 105 iterations, including 5000 burnin,
of a Metropolis-Hastings algorithm.

18



## R script for studying the properties of the SAEM algorithm in the curved
## exponential family when the number of iterations grow.
## -----------------------------------------------------------------------------

## 1- Data simulation

# Sample characteristics

set.seed(3005)

n <- 100 # number of subjects
times <- c(0.25,0.5,1,2,3.5,5,7,9,12,24) # observation times
j <- length(times) # number of observations per subject
dose <- 320 # dose

# True parameter values

vpop <- 31
kapop <- 1.6
clpop <- 2.8
omega2v <- 0.40
omega2ka <- 0.40
omega2cl <- 0.40
sigma2 <- 0.75

# Simulation of the individual parameters

vind <- exp(rnorm(n,log(vpop),sd=sqrt(omega2v)))
kaind <- exp(rnorm(n,log(kapop),sd=sqrt(omega2ka)))
clind <- exp(rnorm(n,log(clpop),sd=sqrt(omega2cl)))

# Simulation of the observations

ypred <- c()

for (k in 1:n){
ypred <- c(ypred,model1cptsim(cbind(kaind,vind,clind),k, times,dose))

}

y <- ypred + rnorm(n*j,0,sd=sqrt(sigma2))

datasim <- data.frame(y=y,dose=rep(dose,n*j),time=rep(times,n),
subject=kronecker(1:n, rep(1,j)))

## 2- Numerical experiment

## a- Evaluation of both estimators of the FIM using the saem algorithm

nbsim <- 500
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# Algorithmic settings
nbiterem <- 3000
nbiterburnin <- 1000

# Saving the nbsim results
iscoarray <- array(0,dim=c(nbsim,7,7,nbiterem))
iobsarray <- array(0,dim=c(nbsim,7,7,nbiterem))
thetaest <- matrix(NA,7,nbsim)

for (k in 1:nbsim){

set.seed(k*100+10)

theta0 <- list(vpop=vpop*runif(1,0.8,1.2),
kapop=kapop*runif(1,0.8,1.2),
clpop=clpop*runif(1,0.8,1.2),
omega2v=omega2v*runif(1,0.4,2),
omega2ka=omega2ka*runif(1,0.4,2),
omega2cl=omega2cl*runif(1,0.4,2),
sigma2=sigma2*runif(1,0.4,2))

res <- saem(datasim, nbiterem, nbiterburnin, theta0)
iscoarray[k,,,]<- res$isco
iobsarray[k,,,]<- res$iobs
thetaest[,k] <- res$thetaest[,nbiterem]

}

# b- Monte-Carlo evaluation of both estimates
# These Monte-Carlo estimations are considered as the targets for the estimates
# computed using the stochastic approximation algorithm

nbMC <- 10000
nbMCburnin <- 5000

tm <- rowMeans(thetaest)

thetaMean <- list(kapop=tm[1],vpop=tm[2],clpop=tm[3],omega2ka=tm[4],
omega2v=tm[5],omega2cl=tm[6],sigma2=tm[7])

FisherMC <- FIM_mc(datasim, nbMC, nbMCburnin, thetaMean)

iscoMC <- FisherMC$iscoMC
iobsMC <- FisherMC$iobsMC

# Evaluation of the mean relative bias and of the mean relative standard errors
# per iteration.

biasIsco <- array(0,dim=c(7,7,nbsim,nbiterem))
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for (j in 1:nbsim){
for (k in 1:nbiterem){

biasIsco[,,j,k] <- (iscoarray[j,,,k] - iscoMC)/iscoMC
}

}

biasIobs <- array(0,dim=c(7,7,nbsim,nbiterem))

for (j in 1:nbsim){
for (k in 1:nbiterem){

biasIobs[,,j,k] <- (iobsarray[j,,,k] - iobsMC)/iobsMC
}

}

rsdIsco <- array(0,dim=c(7,7,nbsim,nbiterem))

for (j in 1:nbsim){
for (k in 1:nbiterem){

rsdIsco[,,j,k] <- (iscoarray[j,,,k] - iscoMC)^2/iscoMC^2
}

}

rsdIobs <- array(0,dim=c(7,7,nbsim,nbiterem))

for (j in 1:nbsim){
for (k in 1:nbiterem){

rsdIobs[,,j,k] <- (iobsarray[j,,,k] - iobsMC)^2/iobsMC^2
}

}

MbiasIsco <- apply(biasIsco[,,,(nbiterburnin+1):nbiterem],c(1,2,4),mean)
MbiasIobs <- apply(biasIobs[,,,(nbiterburnin+1):nbiterem],c(1,2,4),mean)

MsdIsco <- apply(rsdIsco[,,,(nbiterburnin+1):nbiterem],c(1,2,4),mean)
MsdIobs <- apply(rsdIobs[,,,(nbiterburnin+1):nbiterem],c(1,2,4),mean)

save(MbiasIsco,file='Rfiles/ResNLMEexponentialBiasIsco.Rdata')
save(MbiasIobs,file='Rfiles/ResNLMEexponentialBiasIobs.Rdata')
save(MsdIsco,file='Rfiles/ResNLMEexponentialSdIsco.Rdata')
save(MsdIobs,file='Rfiles/ResNLMEexponentialSdIobs.Rdata')

load('Rfiles/ResNLMEexponentialBiasIsco.Rdata')
load('Rfiles/ResNLMEexponentialBiasIobs.Rdata')
load('Rfiles/ResNLMEexponentialSdIsco.Rdata')
load('Rfiles/ResNLMEexponentialSdIobs.Rdata')

MbiasIobs <- MbiasIobs[,,seq(1,2000,10)]
MbiasIsco <- MbiasIsco[,,seq(1,2000,10)]
MsdIobs <- MsdIobs[,,seq(1,2000,10)]
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MsdIsco <- MsdIsco[,,seq(1,2000,10)]

save(MbiasIsco,file='Rfiles/ResNLMEexponentialBiasIsco.Rdata')
save(MbiasIobs,file='Rfiles/ResNLMEexponentialBiasIobs.Rdata')
save(MsdIsco,file='Rfiles/ResNLMEexponentialSdIsco.Rdata')
save(MsdIobs,file='Rfiles/ResNLMEexponentialSdIobs.Rdata')

The results are displayed in Figure 3 and Figure 4.
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Figure 3: Non linear mixed effects model. Representation over iterations of the mean relative bias of
the diagonal components of the estimated Fisher information matrix computed from the 𝑀 = 500
runs of the stochastic algorithm. Red line corresponds to 𝐼𝑛,𝑠𝑐𝑜(𝜃) and blue line corresponds to 𝐼𝑛,𝑜𝑏𝑠(𝜃).
The burn-in iterations of the algorithm are not depicted.

We observe that the bias and the standard deviations of the estimates of the components of both
matrices decrease over iterations, and that for both estimates the bias is nearly zero when the
convergence of the algorithm is reached. According to these simulation results, there is no evidence
that one method is better than the other in terms of bias or standard deviation.

4.2.2 In general latent variable models

We use model specified by Equation 7 again, but we now consider that individual parameter 𝑉𝑖 is
fixed, i.e. 𝑉𝑖 ≡ 𝑉 ∀𝑖 = 1, … , 𝑛. The model is no longer exponential in the sense of Equation 6. We
must therefore use the general version of the stochastic approximation algorithm from Section 3.2.3
to compute 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃) (see R function provided in the Appendix section). We simulate 500 datasets
according to this model and we estimate 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃) and ̂𝜃 for each one. We perform 𝐾 = 3000 iterations
of the algorithm by setting 𝛾𝑘 = 𝑘−0.501. We compute the 500 asymptotic confidence intervals of the
model parameters, by using either the inversed 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃𝑘)’s or the inversed 𝐼𝑛,𝑜𝑏𝑠( ̂𝜃𝑘)’s and then deduce
from them empirical coverage rates.

## R script for studying the relevance of the SAEM algorithm out of the curved
## exponential family
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Figure 4: Non linear mixed effects model. Representation over iterations of the mean relative standard
error of the diagonal components of the estimated Fisher information matrix computed from the
𝑀 = 500 runs of the stochastic algorithm. Red line corresponds to 𝐼𝑛,𝑠𝑐𝑜(𝜃) and blue line corresponds
to 𝐼𝑛,𝑜𝑏𝑠(𝜃). The burn-in iterations of the algorithme are not depicted

## -----------------------------------------------------------------------------

## 1- Data simulation

## Sample characteristics

n <- 100 # number of subjects
times <- c(0.25,0.5,1,2,3.5,5,7,9,12,24) # observation times
j <- length(times) # number of observations per subject
dose <- 320 # dose

## True parameter values
vpop <- 31
kapop <- 1.6
clpop <- 2.8
omega2ka <- 0.40
omega2cl <- 0.40
sigma2 <- 0.75

## Estimation

nbiterem <- 3000 # total number of iterations
nbiterburnin <- 1000 # number of burnin iterations
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nbsim <- 500 # number of simulated datasets

thetaest <- matrix(0,6,nbsim)
isco.est <- array(0,dim=c(6,6,nbsim))
iobs.est <- array(0,dim=c(6,6,nbsim))

for (kk in 1:nbsim){

set.seed(kk*2500+10)

## Simulation of individual parameters
vi <- rep(vpop,n)
kai <- exp(rnorm(n,log(kapop),sd=sqrt(omega2ka)))
cli <- exp(rnorm(n,log(clpop),sd=sqrt(omega2cl)))

## Simulation of the observations
ypred <- c()
for (k in 1:n){

ypred <- c(ypred,model1cptsim(cbind(kai,vi,cli),k,times,dose))
}

y <- ypred + rnorm(n*j,0,sd=sqrt(sigma2))

datasim <- data.frame(y=y,dose=rep(dose,n*j),time=rep(times,n),
subject=kronecker(1:n, rep(1,j)))

## Estimation
theta0 <- list(vpop=vpop*runif(1,0.95,1.05),kapop=kapop*runif(1,0.8,1.2),

clpop=clpop*runif(1,0.8,1.2),omega2ka=omega2ka*runif(1,0.4,2),
omega2cl=omega2cl*runif(1,0.4,2),sigma2=sigma2*runif(1,0.4,2))

res <- saem_non_exp(datasim, nbiterem, nbiterburnin, theta0)

thetaest[,kk] <- res$thetaest[,nbiterem]
isco.est[,,kk] <- res$isco[,,nbiterem]
iobs.est[,,kk] <- res$iobs[,,nbiterem]

filename <- paste("Rfiles/ResNLMEnonexponential.Rdata",sep="")
resNLMEnonExp <- list(thetaest=thetaest,isco=isco.est,iobs=iobs.est)
save(resNLMEnonExp,file=filename)

}

We obtain for the six parameters (𝑘𝑎, 𝑉 , 𝐶𝑙, 𝜔2
𝑘𝑎, 𝜔

2
𝐶𝑙, 𝜎

2) empirical covering rates of
0.96, 0.948, 0.948, 0.932, 0.948, 0.948 respectively for a nominal covering rate of 0.95. This highlights
that our estimate accurately quantifies the precisions of parameter estimates. Note that empirical
coverage rates computed from 𝐼𝑛,𝑜𝑏𝑠 are similar (here 0.952, 0.93, 0.942, 0.924, 0.952, 0.946) but that the
real advantage of our method is that it requires stochastic approximation only on the first-order
derivatives of the complete log-likelihood, contrary to 𝐼𝑛,𝑜𝑏𝑠 which requires deriving the complete
log-likelihood at the second order and thus implies more complicated formulas since the model does
not belong to the exponential family.
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Convergence graphs obtained from a simulated data set are shown in Figure 5. Although theoretical
guarantee is missing in non exponential models, the stochastic approximation algorithm proposed in
Section 3.2.3 converges in practice on this example for both the estimation of the model parameters
and the estimation of the Fisher information matrix.
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Figure 5: Non linear mixed effects model. Convergence plot for some parameter estimates and for
some diagonal components of 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃) over iterations of the stochastic approximation algorithm.

4.2.3 Comparison with other methods

To the best of our knowledge, although there exists contributions focusing on the estimation of the
Fisher information matrix in latent variable models, there is currently no method based on the first
derivatives of the log-likelihood. We compare to (Meng L. and Spall J. C. 2017) who proposed an
iterative method based on numerical first order derivatives of the Q function that is computed at each
E-step of the EM algorithm. The model used by (Meng L. and Spall J. C. 2017) in their simulation study
is a mixture of two Gaussian distributions with unknown expectations 𝜇1 and 𝜇2, fixed variances
equal to 1 and unknown proportion 𝜋. The model parameters are denoted by 𝜃 = (𝜇1, 𝜇2, 𝜋).

## Numerical study in the Gaussian mixture model from (Meng and Spall, 2017)
## This script computes the estimator Isco on a large number of simulated
## datasets of size n=750.

# True paramater values
probtrue <- 2/3 # mixture proportion
m1true <- 3 # mean of the first mixture proportion
m2true <- 0 # mean of the second mixture proportion

# Sample size
n <- 750

# Number of simulated datasets
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nrep <- 10000

# Nominal rate for the computation of empirical coverage rates
rate <- 0.95

# Intermediary R objects to store the results
recouvprob <- 0
recouvm1 <- 0
recouvm2 <- 0

isco <- array(NA,dim=c(nrep,3,3))

for (j in 1:nrep){

y <- sim_gaussian_mixture(n,m1true,m2true,probtrue)

est <- em_gaussian_mixture(y)

iscoest <- fisher_estimation_gaussian_mixture(y,est$m1,est$m2,est$prob)

ICinf <-
c(est$prob,est$m1,est$m2) - qnorm(1-(1-rate)/2)*sqrt(diag(solve(iscoest)))

ICsup <-
c(est$prob,est$m1,est$m2) + qnorm(1-(1-rate)/2)*sqrt(diag(solve(iscoest)))

if ((probtrue>=ICinf[1])&(probtrue<=ICsup[1])){recouvprob <- recouvprob + 1}
if ((m1true>=ICinf[2])&(m1true<=ICsup[2])){recouvm1 <- recouvm1 + 1}
if ((m2true>=ICinf[3])&(m2true<=ICsup[3])){recouvm2 <- recouvm2 + 1}

isco[j,,] <- iscoest
}

res <- list(isco=round(apply(isco,c(2,3),mean),3),recouvprob=recouvprob/nrep,
recouvm1=recouvm1/nrep,recouvm2=recouvm2/nrep)

save(res,file="Rfiles/ResGaussianMixture.Rdata")

We simulate 10000 datasets according to this Gaussian mixture model, using the same setting as (Meng
L. and Spall J. C. 2017), i.e. 𝑛 = 750, 𝜋 = 2/3, 𝜇1 = 3 and 𝜇2 = 0. For each dataset 𝑘 = 1, … , 10000, we
compute the parameter maximum likelihood estimate ̂𝜃𝑘 = (�̂�𝑘, 𝜇1𝑘, 𝜇2𝑘) with an EM algorithm and
then we derive 𝐼𝑛,𝑠𝑐𝑜( ̂𝜃𝑘) directly according to Equation 5 (see R function provided in the Appendix
section) contrary to (Meng L. and Spall J. C. 2017) who used an iterative method. We compute the
empirical mean of the 10000 estimated matrices leading to:

1
10000

∑
𝑘
𝐼𝑛,𝑠𝑐𝑜( ̂𝜃𝑘) = (

2687.873 −210.795 −251.634
−210.795 170.9 −61.546
−251.634 −61.546 393.115

) .

Comparison with the results of (Meng L. and Spall J. C. 2017) is delicate since their numerical
illustration of their method is based on a single simulated dataset thus potentially sensitive to
sampling variations. However, they provide an estimation of the Fisher information matrix from this
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unique dataset

𝐼𝑀𝑒𝑛𝑔 = (
2591.3 −237.9 −231.8
−237.9 155.8 −86.7
−231.8 −86.7 394.5

) .

Our results are coherent with their ones. To check the reliability of our results, we then compute
as above the 10000 asymptotic confidence intervals of the three model parameters. We obtain for
the three parameters (𝜋, 𝜇1, 𝜇2) empirical covering rates of 0.9477, 0.9499, 0.9523 respectively for a
nominal covering rate of 0.95. Thus 𝐼𝑛,𝑠𝑐𝑜 accurately quantifies the precisions of parameter estimates.

5 Conclusion and discussion

In this work, we address the estimation of the Fisher information matrix in general latent variable
models. We focus on the empirical Fisher information matrix which is a moment estimate of the
covariance matrix of the score. We propose stochastic approximation algorithms to compute this
estimate when it can not be calculated analytically and establish theoretical convergence properties
in the curved exponential family setting. We carry out a simulation study in mixed effects model and
in a Poisson mixture model to compare the performances of several estimates, namely the considered
empirical Fisher information matrix and the observed Fisher information matrix. We emphasize that
the empirical FIM requires less regularity assumptions than the observed FIM. From a computational
point of view, the implementation of the algorithm for evaluating the empirical FIM only involves
the first derivatives of the log-likelihood, in contrary to the one for evaluating the observed FIM
which involves the second derivatives of the log-likelihood.

The main perspective of this work is to adapt the procedure for statistical models whose derivatives
of the log-likelihood have no tractable expressions, coupling the algorithm with numerical derivative
procedures.

6 Appendix

6.1 Description of the algorithm without truncation on random boundaries in
curved exponential family model

We provide here a simpler algorithm based on an extension of the stochastic approximation Expec-
tation Maximization algorithm proposed by (Delyon B., Lavielle M., and Moulines E. 1999) using
a simulation step performed from the conditional distribution and without truncation on random
boundaries. Theoretical results are established assuming a stability condition which is usually quite
difficult to check. However, this algorithm can be easily applied in practice.

Initialization step: Initialize arbitrarily for all 1 ≤ 𝑖 ≤ 𝑛 𝑠0𝑖 and 𝜃0.

Repeat until convergence the three steps defined at iteration 𝑘 by:

• Simulation step: for 1 ≤ 𝑖 ≤ 𝑛 simulate a realization 𝑍 𝑘
𝑖 from the conditional distribution

given the observations 𝑌𝑖 denoted by 𝑝𝑖 using the current parameter value 𝜃𝑘−1.

• Stochastic approximation step: compute the quantities for all 1 ≤ 𝑖 ≤ 𝑛

𝑠𝑘𝑖 = (1 − 𝛾𝑘)𝑠𝑘−1𝑖 + 𝛾𝑘𝑆𝑖(𝑍 𝑘
𝑖 )

where (𝛾𝑘) is a sequence of positive step sizes satisfying ∑𝛾𝑘 = ∞ and ∑𝛾 2𝑘 < ∞.
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• Maximisation step: update of the parameter estimator according to:

𝜃𝑘 = argmax
𝜃

𝑛
∑
𝑖=1

(−𝜓𝑖(𝜃) + ⟨𝑠𝑘𝑖 , 𝜙𝑖(𝜃)⟩) = ̂𝜃(𝑠𝑘)

When convergence is reached, say at iteration𝐾 of the algorithm, evaluate the FIM estimator
according to:

𝐼𝐾𝑛,𝑠𝑐𝑜 =
1
𝑛

𝑛
∑
𝑖=1

Δ̂𝑖 (𝑠𝐾) Δ̂𝑖 (𝑠𝐾)
𝑡

where Δ̂𝑖(𝑠) = −𝜕𝜓𝑖( ̂𝜃(𝑠)) + ⟨𝑠𝑖, 𝜕𝜙𝑖( ̂𝜃(𝑠))⟩ for all 𝑠.

Remark. In the cases where the latent variables can not be simulated from the conditional distribution,
one can apply the extension coupling the stochastic algorithm with a Monte Carlo Markov Chain
procedure as presented in (Kuhn E. and Lavielle M. 2004). All the following results can be extended
to this case.

6.2 Theoretical convergence properties

The theoretical following results provide convergence guarantees for the FIM estimate obtained as a
by-product of the MLE. Therefore they extend those of (Delyon B., Lavielle M., and Moulines E. 1999).
To that purpose, in addition to the exponential family assumption for each individual likelihood, we
also make the same type of regularity assumptions as those presented in (Delyon B., Lavielle M., and
Moulines E. 1999) at each individual level. These regularity assumptions on the model are detailed at
the end of the appendix section.

Theorem 6.1. Assume that (𝑀1′) and (𝑀2′), (𝑀3) to (𝑀5) and (𝑆𝐴𝐸𝑀1) to (𝑆𝐴𝐸𝑀4) are ful-
filled. Assume also that with probability 1 clos({𝑠𝑘}𝑘≥1) is a compact subset of 𝒮. Let us define
ℒ = {𝜃 ∈ Θ, 𝜕𝜃𝑙(𝑦 ; 𝜃) = 0} the set of stationary points of the observed log-likelihood 𝑙 defined as
𝑙(𝑦 ; 𝜃) = ∑𝑛

𝑖=1 log 𝑔(𝑦𝑖; 𝜃). Then, for all 𝜃0 ∈ Θ, for fixed 𝑛 ∈ ℕ∗, we get: lim𝑘 𝑑(𝜃𝑘, ℒ) = 0 and
lim𝑘 𝑑(𝐼 𝑘𝑛,𝑠𝑐𝑜, ℐ ) = 0 a.s. where ℐ = {𝐼𝑛,𝑠𝑐𝑜(𝜃), 𝜃 ∈ ℒ}.

Proof. Let us denote by 𝑆(𝑍) = (𝑆1(𝑍1), … , 𝑆𝑛(𝑍𝑛)) the sufficient statistics of the model we consider in
our approach. Note as recalled in (Delyon B., Lavielle M., and Moulines E. 1999), these are not unique.
Let us also define 𝐻(𝑍 , 𝑠) = 𝑆(𝑍) − 𝑠 and ℎ(𝑠) = E𝑍|𝑌 ; ̂𝜃(𝑠)(𝑆(𝑍)) − 𝑠. Assumptions (𝑀1′) and (𝑀2′)
imply that assumptions (𝑀1) and (𝑀2) of Theorem 5 of (Delyon B., Lavielle M., and Moulines E. 1999)
are fulfilled. Indeed these assumptions focus on expressions and regularity properties of the individual
likelihood functions and the corresponding sufficient statistics for each index 𝑖 ∈ {1, … , 𝑛}. Then by
linearity of the log-likelihood function and of the stochastic approximation and applying Theorem 5
of (Delyon B., Lavielle M., and Moulines E. 1999), we get that lim𝑘 𝑑(𝜃𝑘, ℒ) = 0. Moreover we get that
for 1 ≤ 𝑖 ≤ 𝑛, each sequence (𝑠𝑘𝑖 ) converges almost surely toward E𝑍𝑖|𝑌𝑖;𝜃(𝑆𝑖(𝑍𝑖)). Since assumption
(𝑀2′) ensures that for all 1 ≤ 𝑖 ≤ 𝑛 the functions 𝜓𝑖 and 𝜙𝑖 are twice continuously differentiable and
assumption (𝑀5) ensures that the function ̂𝜃 is continuously differentiable, the function Φ𝑛 defined
by Φ𝑛(𝑠𝑘) =

1
𝑛 ∑

𝑛
𝑖=1 Δ̂𝑖(𝑠𝑘)Δ̂𝑖(𝑠𝑘) is continuous. Therefore we get that lim𝑘 𝑑(𝐼 𝑘𝑛,𝑠𝑐𝑜, ℐ ) = 0.

We now establish the asymptotic normality of the estimate ̄𝐼 𝑘𝑛,𝑠𝑐𝑜 defined as ̄𝐼 𝑘𝑛,𝑠𝑐𝑜 = Φ𝑛( ̄𝑠𝑘) with
̄𝑠𝑘 = ∑𝑘

𝑙=1 𝑠𝑙/𝑘 using the results stated by (Delyon B., Lavielle M., and Moulines E. 1999). Let us
denote by 𝑉 𝑒𝑐𝑡(𝐴) the vector composed of the elements of the triangular superior part of matrix 𝐴
ordered by columns.

Theorem 6.2. Assume that (𝑀1′) and (𝑀2′), (𝑀3) to (𝑀5), (𝑆𝐴𝐸𝑀1), (𝑆𝐴𝐸𝑀2), (𝑆𝐴𝐸𝑀3),
(𝑆𝐴𝐸𝑀4), (𝑆𝐴𝐸𝑀4′) and (𝐿𝑂𝐶1) to (𝐿𝑂𝐶3) are fulfilled. Then, there exists a regular stable
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stationary point 𝜃∗ ∈ Θ such that lim𝑘 𝜃𝑘 = 𝜃∗ a.s. Moreover the sequence (√𝑘(𝑉 𝑒𝑐𝑡( ̄𝐼 𝑘𝑛,𝑠𝑐𝑜) −
𝑉 𝑒𝑐𝑡( ̄𝐼𝑛,𝑠𝑐𝑜(𝜃∗))))𝟙lim ‖𝜃𝑘−𝜃∗‖=0 converges in distribution toward a centered Gaussian random vector when
𝑘 goes to infinity. The asymptotic covariance matrix is characterized.

Proof. The proof follows the lines of this of Theorem 7 of (Delyon B., Lavielle M., and Moulines E.
1999). Assumptions (𝐿𝑂𝐶1) to (𝐿𝑂𝐶3) are those of (Delyon B., Lavielle M., and Moulines E. 1999)
and ensure the existence of a regular stable stationary point 𝑠∗ for ℎ and therefore of 𝜃∗ = ̂𝜃(𝑠∗) for
the observed log-likelihood 𝑙. Then applying Theorem 4 of (Delyon B., Lavielle M., and Moulines E.
1999), we get that:

√𝑘( ̄𝑠𝑘 − 𝑠∗)𝟙lim ‖𝑠𝑘−𝑠∗‖=0
ℒ
→ 𝒩 (0, 𝐽 (𝑠∗)−1Γ(𝑠∗)𝐽 (𝑠∗)−1)𝟙lim ‖𝑠𝑘−𝑠∗‖=0

where the function Γ defined in assumption (𝑆𝐴𝐸𝑀4′) and 𝐽 is the Jacobian matrix of the function ℎ.
Applying the Delta method, we get that:

√𝑘(𝑉 𝑒𝑐𝑡(Φ𝑛( ̄𝑠𝑘)) − 𝑉 𝑒𝑐𝑡(Φ𝑛(𝑠∗)))𝟙lim ‖𝑠𝑘−𝑠∗‖=0
ℒ
→ 𝑊𝟙lim ‖𝑠𝑘−𝑠∗‖=0

where 𝑊 ∼ 𝒩 (0, 𝜕𝑉 𝑒𝑐𝑡(Φ𝑛(𝑠∗))𝐽 (𝑠∗)−1Γ(𝑠∗)𝐽 (𝑠∗)−1𝜕𝑉 𝑒𝑐𝑡(Φ𝑛(𝑠∗))𝑡) which leads to the result.

Note that as usually in stochastic approximation results, the rate √𝑘 is achieved when considering an
average estimator (see Theorem 7 of (Delyon B., Lavielle M., and Moulines E. 1999) e.g).

It is assumed that the random variables 𝑠0, 𝑧1, 𝑧2, ⋯ are defined on the same probability space (Ω,𝒜 , 𝑃).
We denote ℱ = {ℱ𝑘}𝑘≥0 the increasing family of 𝜎-algebras generated by the random variables
𝑠0, 𝑧1, 𝑧2, ⋯ , 𝑧𝑘. We assume the following conditions:

• (M1’) The parameter space Θ is an open subset of ℝ𝑝. The individual complete data likelihood
function is given for all 𝑖 = 1, … , 𝑛 by:

𝑓𝑖(𝑧𝑖; 𝜃) = exp (−𝜓𝑖(𝜃) + ⟨𝑆𝑖(𝑧𝑖), 𝜙𝑖(𝜃)⟩) ,

where ⟨⋅, ⋅⟩ denotes the scalar product, 𝑆𝑖 is a Borel function on ℝ𝑑𝑖 taking its values in an open
subset 𝒮𝑖 of ℝ𝑑𝑖 , 𝜙𝑖 and 𝜓𝑖 are measurable function of Θ taking values in open subsets of ℝ𝑑𝑖
and ℝ respectively. Moreover, the convex hull of 𝑆(ℝ∑𝑑𝑖) is included in 𝒮 and for all 𝜃 ∈ Θ
∫ 𝑆(𝑧)∏𝑝𝑖(𝑧𝑖; 𝜃)𝜇(𝑑𝑧) < ∞

• (M2’) Define for each 𝑖 𝐿𝑖 ∶ 𝒮𝑖 × Θ → ℝ as 𝐿𝑖(𝑠𝑖; 𝜃) ≜ −𝜓𝑖(𝜃) + ⟨𝑠𝑖, 𝜙𝑖(𝜃)⟩.The functions 𝜓𝑖 and 𝜙𝑖
are twice continuously differentiable on Θ.

• (M3) The function ̄𝑠 ∶ Θ → 𝒮 defined as ̄𝑠(𝜃) ≜ ∫ 𝑆(𝑧)𝑝(𝑧; 𝜃)𝜇(𝑑𝑧) is continuously differentiable
on Θ.

• (M4) For all 1 ≤ 𝑖 ≤ 𝑛 the function 𝑙𝑖 ∶ Θ → ℝ defined as 𝑙𝑖(𝜃) = log ∫ 𝑓𝑖(𝑧𝑖; 𝜃)𝜇𝑖(𝑑𝑧𝑖) is
continuously differentiable on Θ and 𝜕𝜃 ∫ 𝑓𝑖(𝑧𝑖; 𝜃)𝜇𝑖(𝑑𝑧𝑖) = ∫ 𝜕𝜃𝑓𝑖(𝑧𝑖; 𝜃)𝜇𝑖(𝑑𝑧𝑖).

• (M5) There exists a continuously differentiable function ̂𝜃 ∶ 𝒮 → Θ, such that:

∀𝑠 ∈ 𝒮 , ∀𝜃 ∈ Θ, 𝐿(𝑠; ̂𝜃(𝑠)) ≥ 𝐿(𝑠; 𝜃).

In addition, we define:

• (SAEM1) For all 𝑘 in ℕ, 𝛾𝑘 ∈ [0, 1],∑∞
𝑘=1 𝛾𝑘 = ∞ and ∑∞

𝑘=1 𝛾
2
𝑘 < ∞.

• (SAEM2) 𝑙 ∶ Θ → ℝ and ̂𝜃 ∶ 𝒮 → Θ are 𝑚 times differentiable, where 𝑚 is the integer such
that 𝒮 is an open subset of ℝ𝑚.
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• (SAEM3) For all positive Borel functions Φ, we have 𝐸[Φ(𝑧𝑘+1)|ℱ𝑘] = ∫Φ(𝑧)𝑝(𝑧; 𝜃𝑘)𝜇(𝑑𝑧).

• (SAEM4) For all 𝜃 ∈ Θ, E𝜃(‖𝑆(𝑍)‖2) < ∞, and the function

Γ(𝜃) ≜ Cov𝜃[𝑆(𝑧)] ≜∫ 𝑆(𝑧)𝑡𝑆(𝑧)𝑝(𝑧; 𝜃)𝜇(𝑑𝑧)

− [∫ 𝑆(𝑧)𝑝(𝑧; 𝜃)𝜇(𝑑𝑧)]
𝑡
[∫ 𝑆(𝑧)𝑝(𝑧; 𝜃)𝜇(𝑑𝑧)]

is continuous w.r.t. 𝜃, where E𝜃 stands for the expectation with respect to the posterior
distribution 𝑝(⋅; 𝜃).

We also define assumptions required for the normality result:

• (SAEM1’) There exist 𝛾∗ > 0 and 1/2 < 𝛼 < 1 such that lim 𝑘𝛼/𝛾𝑘 = 𝛾∗, and 𝛾𝑘/𝛾𝑘+1 =
1 + 𝑂(𝑘−1).

• (SAEM4’) For some 𝜀 > 0, sup𝜃 E𝜃(‖𝑆(𝑍)‖
2+𝜀) < ∞ and 𝜃 → Γ(𝜃) is continuous w.r.t. 𝜃.

• (LOC1) The stationary points of 𝑙 are isolated: any compact subset of Θ contains only a finite
number of such points.

• (LOC2) For every stationary point 𝜃∗, the matrices E∗𝜃 (𝜕𝜃𝐿(𝑆(𝑍), 𝜃
∗)(𝜕𝜃𝐿(𝑆(𝑍), 𝜃∗))𝑡) and

𝜕2𝜃 𝐿(E
∗
𝜃 (𝑆(𝑍)), 𝜃

∗) are positive definite.

• (LOC3) Theminimum eigenvalue of the covariancematrix 𝑅(𝜃) = E𝜃((𝑆(𝑍)− ̄𝑠(𝜃))(𝑆(𝑍)− ̄𝑠(𝜃))𝑡)
is bounded away from zero for 𝜃 in any compact subset of Θ.

6.3 R functions

6.3.1 Exact computation of the Fisher information matrix in the linear mixed effects
model

6.3.2 Fisher information matrix extimation in the linear mixed effects model

6.3.3 Fisher information matrix estimation in the Poisson mixture model

6.3.4 SAEM algorithm in the PK model belonging to the curved exponential family

6.3.5 SAEM algorithm in the PK model not belonging to the curved exponential family

Fisher information matrix estimation in the Gaussian mixture model
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