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Abstract

In this paper, Spectral Bridges, a novel clustering algorithm, is introduced. This algorithm
builds upon the traditional k-means and spectral clustering frameworks by subdividing data
into small Voronoï regions, which are subsequently merged according to a connectivity mea-
sure. Drawing inspiration from Support Vector Machine’s margin concept, a non-parametric
clustering approach is proposed, building an affinity margin between each pair of Voronoï
regions. This approach delineates intricate, non-convex cluster structures and is robust to
hyperparameter choice. The numerical experiments underscore Spectral Bridges as a fast, ro-
bust, and versatile tool for clustering tasks spanning diverse domains. Its efficacy extends
to large-scale scenarios encompassing both real-world and synthetic datasets. The Spectral
Bridge algorithm is implemented both in Python (https://pypi.org/project/spectral-bridges) and
R https://github.com/cambroise/spectral-bridges-Rpackage).
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1 Introduction

Clustering is a fundamental technique for exploratory data analysis, organizing a set of objects into
distinct homogeneous groups known as clusters. It is extensively utilized across various fields, such
as biology for gene expression analysis (Eisen et al. 1998), social sciences for community detection in
social networks (Latouche, Birmelé, and Ambroise 2011), and psychology for identifying behavioral
patterns. Clustering is often employed alongside supervised learning as a pre-processing step, helping
to structure and simplify data, thus enhancing the performance and interpretability of subsequent
predictive models (Verhaak et al. 2010). Additionally, clustering can be integrated into supervised
learning algorithms, such as mixture of experts (Jacobs et al. 1991), as part of a multi-objective
strategy.

There are various approaches to clustering, and the quality of the results is largely determined by
how the similarity between objects is defined, either through a similarity measure or a distance
metric. Clustering techniques originate from diverse fields of research, such as genetics, psychometry,
statistics, and computer science. Some methods are entirely heuristic, while others aim to optimize
specific criteria and can be related to statistical models.

Density-based methods identify regions within the data with a high concentration of points, corre-
sponding to the modes of the joint density. A notable non-parametric example of this approach is
DBSCAN (Ester et al. 1996). In contrast, model-based clustering, such as Gaussian mixture models,
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represents a parametric approach to density-based methods. Model-based clustering assumes that
the data is generated from a mixture of underlying probability distributions, typically Gaussian
distributions. Each cluster is viewed as a component of this mixture model, and the Expectation-
Maximization (EM) algorithm is often used to estimate the parameters. This approach provides a
probabilistic framework for clustering, allowing for the incorporation of prior knowledge and the
ability to handle more complex cluster shapes and distributions (McLachlan and Peel 2000).

Geometric approaches, such as k-means (MacQueen et al. 1967), are distance-based methods that aim
to partition data by optimizing a criterion reflecting group homogeneity. The k-means++ algorithm
(Arthur and Vassilvitskii 2006) enhances this approach by providing faster and more reliable results.
However, a key limitation of these methods is the assumption of linear boundaries between clusters,
implying that clusters are convex. To address non-convex clusters, the kernel trick can be applied,
allowing for a more flexible k-means algorithm. This approach is comparable to spectral clustering in
handling complex cluster boundaries (Dhillon, Guan, and Kulis 2004). The k-means algorithm can also
be interpreted within the framework of model-based clustering under specific assumptions (Govaert
and Nadif 2003), revealing that it is essentially a special case of the more general Gaussian mixture
models, where clusters are assumed to be spherical Gaussian distributions with equal variance.

Graph-based methods represent data as a graph, with vertices symbolizing data points and edges
weighted to indicate the affinity between these points. Spectral clustering can be seen as a relaxed
version of the graph cut algorithm (Shi and Malik 2000). However, traditional spectral clustering faces
significant limitations due to its high time and space complexity, greatly hindering its applicability
to large-scale problems (Von Luxburg 2007).

The method we propose aims to find non-convex clusters in large datasets, without relying on a
parametric model, by using spectral clustering based on an affinity that characterizes the local density
of the data. The algorithm described in this paper draws from numerous clustering approaches. The
initial intuition is to detect high-density areas. To this end, vector quantization is used to divide the
space into a Voronoï tessellation. An original geometric criterion is then employed to detect pairs
of Voronoï regions that are either distant from each other or separated by a low-density boundary.
Finally, this affinity measure is considered as the weight of an edge in a complete graph connecting
the centroids of the tessellation, and a spectral clustering algorithm is used to find a partition of this
graph. The two main parameters of the algorithm are the number of Voronoï Cells and the number
of clusters.

The paper begins with a section dedicated to presenting the context and related algorithms, followed
by a detailed description of the proposed algorithm. Experiments and comparisons with reference
algorithms are then conducted on both real and synthetic data.

2 Related Work

Spectral clustering is a graph-based approach that computes the eigenvectors of the graph’s Laplacian
matrix. This technique transforms the data into a lower-dimensional space, making the clusters
more discernible. A standard algorithm like k-means is then applied to these transformed features
to identify the clusters (Von Luxburg 2007). Spectral clustering enables capturing complex data
structures and discerning clusters based on the connectivity of data points in a transformed space,
effectively treating it as a relaxed graph cut problem.

Classical spectral clustering involves two phases: construction of the affinity matrix and eigen-
decomposition. Constructing the affinity matrix requires 𝑂(𝑛2𝑑) time and 𝑂(𝑛2) memory, while
eigendecomposition demands 𝑂(𝑛3) time and 𝑂(𝑛2) memory, where 𝑛 is the data size and 𝑑 is the
dimension. As 𝑛 increases, the computational load escalates significantly (Von Luxburg 2007).
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To mitigate this computational burden, one common approach is to sparsify the affinity matrix and
use sparse eigensolvers, reducing memory costs but still requiring computation of all original matrix
entries (Von Luxburg 2007). Another strategy is sub-matrix construction. The Nyström method
randomly selects 𝑚 representatives from the dataset to form an 𝑛 × 𝑚 affinity sub-matrix (Chen et
al. 2010). Cai et al. extended this with the landmark-based spectral clustering method, which uses
k-means to determine𝑚 cluster centers as representatives (Cai and Chen 2014). Ultra-scalable spectral
clustering (U-SPEC) employs a hybrid representative selection strategy and a fast approximation
method for constructing a sparse affinity sub-matrix (Huang et al. 2019).

Other approaches use the properties of the small initial clusters for the affinity computation. Cluster-
ing Based on Graph of Intensity Topology (GIT) estimates for example a global topological graph
(topo-graph) between local clusters (Gao et al. 2021). It then uses the Wasserstein Distance between
predicted and prior class proportions to automatically cut noisy edges in the topo-graph and merge
connected local clusters into final clusters.

The issue of characterizing the affinity between two clusters to create an edge weight is central to
the efficiency of a spectral clustering algorithm operating from a submatrix.

Notice that the clustering robustness of many Spectral clustering algorithms heavily relies on the
proper selection of kernel parameter, which is difficult to find without prior knowledge (Ng, Jordan,
and Weiss 2001).

3 Spectral Bridges

The proposed algorithm uses k-means centroids for vector quantization defining Voronoï region, and
a strategy is proposed to link these regions, with an “affinity” gauged in terms of minimal margin
between pairs of classes. These affinities are considered as weight of edges defining a completely
connected graph whose vertices are the regions. Spectral clustering on the region provide a partition
of the input space. The sole mandatory parameters of the algorithm are the number of Voronoï
regions and the number of final clusters.

3.1 Bridge affinity

The basic idea involves calculating the difference in inertia achieved by projecting onto a segment
connecting two centroids, rather than using the two centroids separately (see Figure 1). If the
difference is small, it suggests a low density between the classes. Conversely, if this difference is
large, it indicates that the two classes may reside within the same densely populated region.
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Figure 1: Balls (left) versus Bridge (right). The inertia of each structure is the sum of the squared
distances represented by grey lines.

Let us consider a sample 𝑋 = (𝑥𝑖)𝑖∈{1,⋯,𝑛} of vectors 𝑥𝑖 ∈ ℝ𝑑 and a set of 𝑚 coding vectors (𝜇𝑘)𝑘∈{1,⋯,𝑚}
defining a partition 𝑃 = {𝒱1, ⋯ , 𝒱𝑚} of ℝ𝑑 into 𝑚 Voronoï regions:

𝒱𝑘 = {x ∈ ℝ𝑑 ∣ ‖x − 𝜇𝑘‖ ≤ ‖x − 𝜇𝑗‖ for all 𝑗 ≠ 𝑘} .

In the following a ball denotes the subset of 𝑋 in a Voronoï region. The inertia of two balls 𝒱𝑘 and
𝒱𝑙 is

𝐼𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘

‖𝑥𝑖 − 𝜇𝑘‖
2 + ∑

𝑥𝑖∈𝒱𝑙

‖𝑥𝑖 − 𝜇𝑙‖
2.

We define a bridge as a structure defined by a segment connecting two centroids 𝜇𝑘 and 𝜇𝑙. The
inertia of a bridge between 𝒱𝑘 and 𝒱𝑙 is defined as

𝐵𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘∪𝒱𝑙

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2,

where
𝑝𝑘𝑙(𝑥𝑖) = 𝜇𝑘 + 𝑡𝑖(𝜇𝑙 − 𝜇𝑘),

with

𝑡𝑖 = min (1,max (0,
⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩

‖𝜇𝑙 − 𝜇𝑘‖2
)) .

Considering two centroïds, the normalized average of the difference between the balls inertia and
that of the Bridge (see Appendix) constitutes the basis of our affinity measure between two regions:

𝐼𝑘𝑙 − 𝐵𝑘𝑙
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

=
∑𝑥𝑖∈𝒱𝑘

⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩
2
+ +∑𝑥𝑖∈𝒱𝑙

⟨𝑥𝑖 − 𝜇𝑙|𝜇𝑘 − 𝜇𝑙⟩
2
+

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖4
,

=
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘 + 𝑛𝑙

,
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where

𝛼𝑖 = {
𝑡𝑖, if 𝑡𝑖 ∈ [0, 1/2],
1 − 𝑡𝑖, if 𝑡𝑖 ∈]1/2, 1].

The basic intuition behind this affinity is that 𝑡𝑖 represents the relative position of the projection of 𝑥𝑖
on the segment [𝜇𝑘, 𝜇𝑙]. 𝛼𝑖 represents the relative position on the segment, with the centroid of the
class to which 𝑥𝑖 belongs as the reference point.

This quantity can also be understood in relation to a local form of PCA. Unlike the standard PCA
inertia criterion, this approach is directional and limited to the union of two Voronoï cells.

Let 𝑋|𝑘 denote the data matrix restricted to the region 𝒱𝑘. The projection operator onto the 𝜇𝑘-
centered segment [0, 𝜇𝑙 − 𝜇𝑘] is given by:

𝜋𝑘𝑙(⋅) = 𝑝𝑘𝑙(⋅) − 𝜇𝑘

It then follows that:
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘 + 𝑛𝑙

=
‖𝜋𝑘𝑙(𝑋|𝑘)‖2𝐹 + ‖𝜋𝑙𝑘(𝑋|𝑙)‖2𝐹

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2
,

where ‖ ⋅ ‖𝐹 is the Frobenius norm.

This formulation is particularly useful for numerical implementation.

Moreover, the boundary that separates the two clusters defined by centroids 𝜇𝑘 and 𝜇𝑙 is a hyperplane
𝒫𝑘𝑙. This hyperplane is orthogonal to the line segment connecting the centroids and intersects this
segment at its midpoint.

If we consider all points 𝑥𝑖 ∈ 𝒱𝑘 ∪ 𝒱𝑙 which are not projected on centroids but somewhere on the
segment, the distance from a point to the hyperplane is

𝑑(𝑥𝑖, 𝒫𝑘𝑙) = (1/2 − 𝛼𝑖)‖𝜇𝑘 − 𝜇𝑙‖.

This distance is similar to the concept of margin in Support Vector Machine (Cortes and Vapnik 1995).
When the 𝛼𝑖 values are small (close to zero since 𝛼𝑖 ∈ [0, 1/2]), the margins to the hyperplane are
large, indicating a low density between the classes. Conversely, if the margins are small, it suggests
that the two classes may reside within the same densely populated region. Consequently, the sum of
the 𝛼𝑖 or 𝛼2𝑖 increases with the density of the region between the classes (See Figure Figure 2).

6



(a) Margin with close centroids
(b) Density of the 𝛼𝑖 for close centroids

(c) Margin with well separated centroids
(d) Density of the 𝛼𝑖 for well separated centroids

Figure 2: Spectral Bridge affinity illustration involving two centroids. The bold black dots mark
the centroids of each cluster, while the colored cells represent the final partition of data points. In
subfigures (a) and (c), the length of each dotted grey segment is proportional to 1/2 − 𝛼𝑖, whereas
the thin black segments are proportional to 𝛼𝑖. Subfigures (b) and (d) depict the distribution of 𝛼𝑖,
showing the behavior when clusters are either closely positioned (a, b) or well-separated (c, d).

Note that the criterion is local and indicates the relative difference in densities between the balls and
the bridge, rather than evaluating a global score for the densities of the structures.

Eventually, we define the bridge affinity between centroids 𝑘 and 𝑙 as the square root of the variance
gain:

𝑎𝑘𝑙 = {
0, if 𝑘 = 𝑙,

√
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼2𝑖
𝑛𝑘+𝑛𝑙

, otherwise.

The inclusion of the square root redefines the variance affinity measure. Rather than using the
squared Euclidean norm, the affinity is interpreted as a quadratic mean, representing the ratio of the
standard deviation to the length of the segment connecting two centroids.

This concept can be generalized by introducing the 𝑝-bridge affinity for any 𝑝 > 0 using the
Minkowski mean:

𝑎𝑝,𝑘𝑙 =
⎧

⎨
⎩

0, if 𝑘 = 𝑙,

(
∑𝑥𝑖∈𝒱𝑘∪𝒱𝑙

𝛼𝑝𝑖
𝑛𝑘+𝑛𝑙

)
1/𝑝

, otherwise.
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Both definitions are equivalent when 𝑝 = 2. For 𝑝 = 1, the affinity aligns directly with the SVM
model previously discussed. Note that this yields a bounded metric in [0, 1/2].

To allow points with large margin to dominate and make the algorithm more robust to noise and
outliers we consider the following exponential transformation:

�̃�𝑘𝑙 = 𝑔(𝑎𝑘𝑙) = exp(𝛾𝑎𝑘𝑙). (1)

where 𝛾 is a scaling factor. This factor is set to ensure a large enough separation between the final
coefficients. This factor is determined by the equation:

𝛾 =
𝑙𝑜𝑔(𝑀)
𝑞90 − 𝑞10

,

where 𝑞10 and 𝑞90 are respectively the 10th and 90th percentiles of the original affinity matrix
and 𝑀 > 1. Thus, since the transformation is order-preserving, the 90th percentile of the newly
constructed matrix is 𝑀 times greater than the 10th percentile. By default, 𝑀 is arbitrarily set to a
large value of 104.

This regularization is crucial: with a bounded affinity metric, exponentiation enhances the separation
between low and high-density regions, controlled by a scaling parameter, as in traditional spectral
clustering. Redefining the metric with a square root (or power 1/𝑝 for the generalized affinity) helps
mitigate a converse issue. Omitting this step would entail 𝑎𝑝,𝑘𝑙 ≤ 2−𝑝. Machine error could cause
numerical instability when solving the Laplacian eigenproblem, especially if values become too small
or too large, since the range of affinity values can become wide when the initial ratio between the
largest and smallest non-zero unscaled bridge affinities is high. This transformation reduces the
maximum values in the affinity matrix while preserving the metric’s interpretability and distance-like
properties; importantly, this adjustment is not intended for outlier detection.

3.2 Algorithm

The Spectral Bridges algorithm first identifies local clusters to define Voronoï regions, computes
edges with affinity weights between these regions, and ultimately cuts edges between regions with
low inter-region density to determine the final clusters (see Algorithm 1 and Figure 3).

In spectral clustering, the time complexity is usually dominated by the eigendecomposition step,
which is 𝑂(𝑛3). However, in the case of Spectral Bridges, the k-means algorithm has a time complexity
of 𝑂(𝑛 ×𝑚 × 𝑑). For datasets with large 𝑛, this can be more significant than the 𝑂(𝑚3) time complexity
of the Spectral Bridges eigendecomposition. As for the affinity matrix construction, there are 𝑚2

coefficients to be calculated. Each 𝑎𝑘𝑙 coefficient requires the computation of 𝑛𝑘 + 𝑛𝑙 dot products as
well as the norm ‖𝜇𝑘 − 𝜇𝑙‖, the latter often being negligeable. Assuming that the Voronoï regions are
roughly balanced in cardinality, we have 𝑛𝑘 ≈

𝑛
𝑚 . Since 𝑚 should always be less than 𝑛, therefore

𝑛
𝑚 > 1 and the time complexity of the affinity matrix is 𝑂( 𝑛𝑚 × 𝑚2 × 𝑑) = 𝑂(𝑛 × 𝑚 × 𝑑) given the
acceptable range of values for 𝑚. Nonetheless, this is rarely the bottleneck.
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Algorithm 1 Spectral Bridges
1: procedure SpectralBridges(𝑋, 𝑘, 𝑚) ▷ 𝑋: input dataset, 𝑘: number of clusters, 𝑚: number of

Voronoï regions
2: Step 1: Vector Quantization
3: centroids, voronoiRegions ← KMeans(𝑋,𝑚) ▷ Initial centroids and Voronoi regions using

k-means++
4: Step 2: Affinity Computation
5: 𝐴 = {𝑔(𝑎𝑘𝑙)}𝑘𝑙 ← Affinity(𝑋, centroids, voronoiRegions) ▷ Compute affinity matrix 𝐴
6: Step 3: Spectral Clustering ▷ Assign each region to a cluster
7: labels ← SpectralClustering(𝐴, 𝑘)
8: Step 4: Propagate ▷ Assign each data point to the cluster of its region
9: clusters ← Propagate(𝑋, labels, voronoiRegions)
10: return clusters ▷ Return cluster labels for data points in 𝑋
11: end procedure

(a) Vector quantization (b) Affinity computation (c) Spectral clustering

Figure 3: Illustration of the Spectral Bridges algorithm with the Iris dataset (first principal plane).
The bold red dots represent the centroids of the clusters, while the colored cells indicate the final
partition of the data points. Vector quantization (Step 1 of Algorithm 1 ), Affinity computation (Step
2 of Algorithm 1 ), Spectral clustering and spreading (Step 3-4 of Algorithm 1 ).

3.3 Hyperparameter settings

The proposed algorithm requires three input parameters: the number of clusters 𝐾, the number of
Voronoï regions 𝑚, and a scaling parameter for the spectral clustering phase.

Model selection in non-parametric settings is challenging due to the absence of predefined model
parameters. It relies heavily on data-driven approaches. Metrics like the Gap Statistic (Tibshirani,
Walther, and Hastie 2001) and the Laplacian eigengap (Von Luxburg 2007) are potential tools for
hyperparameter selection.

We propose a method for choosing the scaling parameter (see Equation Equation 1) that yields stable
results. Selecting both 𝑚, the number of Voronoï regions, and 𝐾, the number of clusters, is difficult.
We address this by adopting a heuristic: first, choose 𝐾, then determine 𝑚 using a modified Laplacian
eigengap.

If𝐾 represents the true number of clusters, the affinitymatrix resembles a graph adjacencymatrix with
𝐾 connected components. This configuration is characterized by an eigengap at the 𝐾th eigenvalue.
In Self-Tuning Spectral Clustering (Zelnik-Manor and Perona 2004), the eigengap 𝜆𝐾+1 − 𝜆𝐾 is used
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to evaluate clustering quality for 𝐾 clusters. Following a similar strategy, and assuming 𝐾 is known,
the Laplacian eigengap at the 𝐾th eigenvalue can select 𝑚, with the scaling parameter fixed.

Determining the optimal value of 𝑚 using the eigengap is not straightforward. As the affinity
matrix dimension increases, the number of eigenvalues grows, reducing gaps between them. This
makes direct comparisons unreliable. To address this, we use the ratio 𝜌 = (𝜆𝐾+1 − 𝜆𝐾)/𝜆𝐾. This
metric is positive and measures the relative difference between consecutive eigenvalues. It facilitates
meaningful comparisons across different values of 𝑚. A high value of 𝑅 suggests high clustering
quality, whereas lower values indicate weaker performance.

Using this metric, we determine a near-optimal value for 𝑚 by maximizing the average 𝑅 across
possible values of 𝑚. Additionally, the metric enhances robustness by running the algorithm with
different random seeds and selecting the clustering result with the highest normalized eigengap.

4 Numerical experiments

In this section, the results obtained from testing the Spectral Bridges algorithm on various datasets,
both small and large scale, including real-world and well-known synthetic datasets, are presented.
These experiments assess the accuracy, time and space complexity, ease of use, robustness, and adapt-
ability of our algorithm. We compare Spectral Bridges (SB) against several state-of-the-art methods,
including k-means++ (KM) (MacQueen et al. 1967; Arthur and Vassilvitskii 2006), Expectation-
Maximization (EM) (Dempster, Laird, and Rubin 1977), Ward Clustering (WC) (Ward Jr 1963), DB-
SCAN (DB) (Ester et al. 1996) and GIT (Gao et al. 2021). This comparison establishes baselines across
centroid-based clustering algorithms, hierarchical methods, and density-based methods.

The algorithms are evaluated on both raw and Principal Component Analysis processed (PCA-
processed) data with varying dimensionality. For synthetic datasets, Gaussian and/or uniform noise
is introduced to assess the robustness of the algorithm.

4.1 Datasets

4.1.1 Real-world data

• MNIST: A large dataset containing 60,000 handwritten digit images in ten balanced classes,
commonly used for image processing benchmarks. Each image consists of 28 × 28 = 784 pixels.

• UCI ML Breast Cancer Wisconsin: A dataset featuring computed attributes from digitized
images of fine needle aspirates (FNA) of breast masses, used to predict whether a tumor is
malignant or benign.

4.1.2 Synthetic data

• Impossible: A synthetic dataset designed to challenge clustering algorithms with complex
patterns.

• Moons: A two-dimensional dataset with two interleaving half-circles.
• Circles: A synthetic dataset of points arranged in two non-linearly separable circles.
• Smile: A synthetic dataset with points arranged in the shape of a smiling face, used to test the
separation of non-linearly separable data.

4.1.3 Datasets Summary & Class Balance
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Table 1: Datasets Summary & Class Balance Class proportions are presented in ascending order
starting from label 0.

Dataset #Dims
#Sam-
ples #Classes Class Proportions

MNIST 784 60000 10 9.9%, 11.2%, 9.9%, 10.3%, 9.7%, 9%, 9.9%, 10.4%, 9.7%, 9.9%
UCI Breast
Cancer

30 569 2 37.3%, 62.7%

Impossible 2 3594 7 24.8%, 18.8%, 11.3%, 7.5%, 12.5%, 12.5%, 12.5%
Moons 2 1000 2 50%, 50%
Circles 2 1000 2 50%, 50%
Smile 2 1000 4 25%, 25%, 25%, 25%

4.2 Metrics

To evaluate the performance of the clustering algorithm, the Adjusted Rand Index (ARI) (Halkidi,
Batistakis, and Vazirgiannis 2002) and Normalized Mutual Information (NMI) (Cover and Thomas
1991) are used. ARI measures the similarity between two clustering results, ranging from −0.5 to 1,
with 1 indicating perfect agreement. NMI ranges from 0 to 1, with higher values indicating better
clustering quality. In some tests, the variability of scores across multiple runs is also reported due to
the random initialization in k-means, though k-means++ generally provides stable and reproducible
results.

4.3 Platform

All experiments were conducted on an Archlinux machine with Linux 6.9.3 Kernel, 8GB of RAM, and
an AMD Ryzen 3 7320U processor.

4.4 Sensitivity to hyperparameters

The hyperparameters of the Spectral Bridges algorithm were based on the size of each dataset, 𝑛, and
the number of clusters, 𝐾.

To better grasp the sensitivity with respect to 𝑚, the number of Voronoï cells, Spectral
Bridges was run on the PCA ℎ = 32 embedded MNIST dataset with varying values of
𝑚 ∈ {10, 120, 230, 340, 450, 560, 670, 780, 890, 1000}. The case 𝑚 = 10 is equivalent to the k-means++
algorithm. ARI and NMI scores are recorded over 20 consecutive iterations and subsequently plotted.
As shown by Figure 4, the accuracy seems to be consistently increasing with values of 𝑚, with the
largest observed gap occurring between values of 𝑚 = 10 and 𝑚 = 120, and flattening thereafter,
indicating a tremendous improvement over the classical k-means++ framework even for empirically
suboptimal hyperparameter values.
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Figure 4: ARI and NMI scores of Spectral Bridges with varying values of 𝑚.

For other algorithms, such as DBSCAN, labels were used to determine the best hyperparameter
values to compare our method against the “best case scenario”, thus putting the Spectral Bridges
algorithm at a voluntary disadvantage.

4.5 Time complexity

To assess the algorithm’s time complexity, the average execution times over 50 runs were computed
for varying numbers of Voronoï regions 𝑚 as well as dataset sizes. With a constant number of clusters
𝐾 = 5 and an embedding dimension of 𝑑 = 10, the results (see Figure 5) highlight Spectral Bridges
algorithm’s efficacy. As discussed previously, we observe a linear relationship between 𝑚 and the
execution time because the matrix construction is highly optimized and the time taken is almost
negligeable compared to that of the initial k-means++ centroids initalization.

(a) Varying 𝑛, fixed 𝑚 = 10 (b) Varying 𝑚, fixed 𝑛 = 5000

Figure 5: Average time taken per model fit.

4.6 Accuracy

The algorithm’s accuracy was first evaluated on theMNIST dataset. Metrics were collected to compare
our method with k-means++, EM, GIT, and Ward clustering. Metrics were estimated by computing
the empirical average over 10 consecutive runs for each method. Due to limited computational
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resources, we randomly selected a sample of 20,000 data points (one-third of the total) for each run,
on which all algorithms were trained and tested. To ensure reproducibility, a fixed random seed was
set at the beginning of all scripts. Note, however, that this does not imply centroids were initialized
identically for centroid based methods, as these may vary according to the implementation of each
tested algorithm.

Let ℎ denote the embedding dimension of the dataset. Spectral Bridges was tested both on the raw
MNIST dataset without preprocessing (ℎ = 784) and after reducing its dimension using PCA to
ℎ ∈ {8, 16, 32, 64} (see Figure 6).
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Metric
Algo-
rithm h = 8 h = 16 h = 32 h = 64 h = 784 (full)

ARI KM 0.3661 0.3701 0.3794 0.3740 0.3665
EM 0.4672 0.5081 0.4826 0.4422 0.1850
WC 0.4123 0.4729 0.4771 0.5043 0.5164
GIT 0.4162 0.4792 0.3166 0.2347 0.3094
SB 0.5789 0.6875 0.7110 0.6983 0.6619

NMI KM 0.4778 0.4899 0.5037 0.4969 0.4915
EM 0.6007 0.6462 0.6355 0.5952 0.3252
WC 0.5471 0.6340 0.6532 0.6634 0.6648
GIT 0.5110 0.5720 0.4227 0.3314 0.4297
SB 0.6592 0.7616 0.7895 0.7846 0.7628

Figure 6: Comparison of clustering algorithms on PCA embedded and full MNIST with ARI and NMI
metrics. The highest mean scores among tested algorithms are in bold.
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Additionally, the proposed algorithm was evaluated on the MNIST dataset after reducing its di-
mensionality to ℎ ∈ {2, 4, 8, 16} using UMAP (McInnes et al. 2018), a state-of-the-art nonlinear
dimensionality reduction technique (see Figure 7). To enhance the clustering performance of Spectral
Bridges, the normalized eigengap method was applied. This approach trains the algorithm with mul-
tiple initializations and determines the optimal number of Voronoï cells by selecting the configuration
with the largest normalized eigengap (refer to Section 3.3).

(a) ARI and NMI scores of k-means++ (pink), EM (green), Ward Clustering (red), GIT (blue), Spectral Bridges
(purple).

Metric
Algo-
rithm h = 2 h = 4 h = 8 h = 16

ARI KM 0.8154 0.7971 0.7985 0.8160
EM 0.8670 0.8828 0.8494 0.8359
WC 0.9008 0.8015 0.8004 0.8105
GIT 0.9141 0.9298 0.9297 0.9289
SB 0.9304 0.9318 0.9315 0.9332

NMI KM 0.8664 0.8586 0.8574 0.8641
EM 0.8908 0.9025 0.8916 0.8826
WC 0.9047 0.8733 0.8721 0.8785
GIT 0.9081 0.9172 0.9183 0.9184
SB 0.9182 0.9198 0.9125 0.9214

Figure 7: Comparison of clustering algorithms on UMAP embedded MNIST with ARI and NMI
metrics. The highest mean scores among tested algorithms are in bold.

Note the Spectral Bridges algorithm shines particularly even with quite simple dimension reduction
algorithms.

For visualization purposes, the predicted clusters by Spectral Bridges and k-means++ were projected
using UMAP to compare them against the ground truth labels and to better understand the cluster
shapes (see Figure 8). Note that this projection was not used in the experiments as an embedding,
and thus does not play any role in the clustering process itself. As a matter of fact, the embedding
used was obtained with Principal Componant Analysis (PCA), ℎ = 32 and 500 Voronoï regions. Note
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that the label colors match the legend only in the case of the ground truth data. Indeed, the ordering
of the labels have no significance on clustering quality. Importantly, Spectral Bridges demonstrates
remarkable accuracy, with the exception of the classes representing digits “4” and “9”, which appear
to have been merged.

(a) k-means++ (b) Spectral Bridges (c) Ground Truth

Figure 8: UMAP projection of predicted clusters against the ground truth labels.

The Spectral Bridges algorithm was also put to the test against the same competitors using scikit-
learn’s UCI Breast Cancer data. Once again, the normalized eigengap method was used, and the
presented algorithm performed well, although the advantage was not as obvious in this case (see
Figure 9). However, in none of our tests has it ranked worse than k-means++. The results are
displayed as a boxplot generated from 200 iterations of each algorithm using a different seed, in order
to better grasp the variability lying in the seed dependent nature of the k-means++, Expectation
Maximization and Spectral Bridges algorithms.
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(a) ARI and NMI scores of k-means++ (pink), EM (green), Ward Clustering (red), GIT (blue), and Spectral
Bridges (purple) on the UCI Breast Cancer dataset.

Metric Algorithm UCI Breast Cancer

ARI KM 0.6675
EM 0.7718
WC 0.5750
GIT 0.2138
SB 0.6985

NMI KM 0.5502
EM 0.6586
WC 0.4569
GIT 0.2576
SB 0.5787

Figure 9: Comparison of clustering algorithms on the UCI Breast Cancer dataset with ARI and NMI
metrics. The highest mean scores among tested algorithms are in bold.

Since the Spectral Bridges algorithm is expected to excel at discerning complex and intricate cluster
structures, an array of four toy datasets was collected, as illustrated in Figure 10.

(a) Impossible (b) Moons (c) Circles (d) Smile

Figure 10: Four toy datasets.

Multiple algorithms, including the proposed one, were benchmarked in the exact same manner as
for the UCI Breast Cancer data. The results show that the proposed method outperforms all tested
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algorithms (DBSCAN, k-means++, Expectation Maximization, GIT, and Ward Clustering) while
requiring few hyperparameters. As previously discussed, DBSCAN’s parameters were optimized
using the ground truth labels to represent a best-case scenario; however, in practical applications,
suboptimal performance is more likely. Despite this optimization, the Spectral-Bridge algorithm still
demonstrates superior ability to capture and represent the underlying cluster structures.
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(a) ARI and NMI scores of Spectral Bridges and competitors on standard synthetic toy datasets.

Metric
Algo-
rithm Impossible Moons Circles Smile

ARI DB 0.8180 0.9294 0.9920 1.0000
KM 0.5984 0.2390 −0.0009 0.5522
EM 0.6112 0.4897 −0.0009 0.7526
WC 0.6368 0.4298 0.0068 0.5548
GIT 0.8895 0.9920 1.0000 0.5693
SB 0.9996 0.9912 1.0000 1.0000

NMI DB 0.8823 0.8825 0.9803 1.0000
KM 0.6936 0.1807 0.0000 0.6126
EM 0.7021 0.3905 0.0001 0.8001
WC 0.7505 0.4690 0.0056 0.6120
GIT 0.9103 0.9812 1.0000 0.6210
SB 0.9995 0.9787 1.0000 1.0000

Figure 11: Comparison of clustering algorithms on toy datasets with ARI and NMI metrics. The
highest mean scores among tested algorithms are in bold.
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5.1 Noise robustness

To evaluate the noise robustness of the algorithm, two experimental setups were devised: one involved
introducing Gaussian-distributed perturbations to the data, and the other involved concatenating
uniformly distributed points within a predefined rectangular region (determined by the span of
the dataset) to the existing dataset. As illustrated in Figure 12, the tests demonstrate that in both
scenarios, the algorithm exhibits a high degree of insensitivity to noise.

(a) Clean (b) Uniform noise (c) Gaussian noise

Figure 12: Three representations of the algorithm’s predicted cluster centers are displayed as colored
dots, with each point of the Impossible dataset shown as a small black dot. In the left graph, the
dataset is unmodified. In the center graph, 250 uniformly distributed samples were added. In the
right graph, Gaussian noise perturbations with 𝜎 = 0.1 were applied.

6 Conclusive remarks

Spectral Bridges is an original clustering algorithm which presents a novel approach by integrating
the strengths of traditional k-means and spectral clustering frameworks. This algorithm utilizes a
simple affinity measure for spectral clustering, which is derived from the minimal margin between
pairs of Voronoï regions.

The algorithm demonstrates scalability, handling large datasets efficiently through a balanced com-
putational complexity between the k-means clustering and eigendecomposition steps. As a non-
parametric method, Spectral Bridges does not rely on strong assumptions about data distribution,
enhancing its versatility across various data types. It performs exceptionally well with both syn-
thetic and real-world data and consistently outperforms conventional clustering algorithms such as
k-means, DBSCAN, and mixture models.

The design of Spectral Bridges ensures robustness to noise, a significant advantage in real-world
applications. Additionally, the algorithm requires minimal hyperparameters, primarily the number
of Voronoï regions, making it straightforward to tune and deploy.

Furthermore, Spectral Bridges can be kernelized, allowing it to handle data in similarity space directly,
which enhances its flexibility and applicability. Overall, Spectral Bridges is a powerful, robust, and
scalable clustering algorithm that offers significant improvements over traditional methods, making
it an excellent tool for advanced clustering tasks across numerous domains.
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7 Appendix

7.1 Derivation of the bridge affinity

We denote a bridge as a segment connecting two centroids 𝜇𝑘 and 𝜇𝑙. The inertia of a bridge between
𝒱𝑘 and 𝒱𝑙 is defined as

𝐵𝑘𝑙 = ∑
𝑥𝑖∈𝒱𝑘∪𝒱𝑙

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2,

where
𝑝𝑘𝑙(𝑥𝑖) = 𝜇𝑘 + 𝑡𝑖(𝜇𝑙 − 𝜇𝑘),

with

𝑡𝑖 = min (1,max (0,
⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩

‖𝜇𝑙 − 𝜇𝑘‖2
)) .

𝐵𝑘𝑙, the bridge inertia between centroids 𝑘 and 𝑙, can be expressed as the sum of three terms, which
represents the projection onto each centroïds and onto the segment:

𝐵𝑘𝑙 = ∑
𝑖∣𝑡𝑖=0

‖𝑥𝑖 − 𝜇𝑘‖
2 + ∑

𝑖∣𝑡𝑖=1
‖𝑥𝑖 − 𝜇𝑙‖

2 + ∑
𝑖∣𝑡𝑖∈]0,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2.

The last term may be decomposed in two parts corresponding to the points of the two Voronoï
regions which are projected on the segment:

∑
𝑖∣𝑡𝑖∈]0,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 + ∑

𝑖∣𝑡𝑖∈[
1
2 ,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

and each part further decomposed using Pythagore

∑
𝑖∣𝑡𝑖∈]0,

1
2 [

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝜇𝑘 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

= ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑡𝑖(𝜇𝑘 − 𝜇𝑙)‖
2,

∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

‖𝑥𝑖 − 𝑝𝑘𝑙(𝑥𝑖)‖
2 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝑥𝑖 − 𝜇𝑙‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖𝜇𝑙 − 𝑝𝑘𝑙(𝑥𝑖)‖
2

= ∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

‖𝑥𝑖 − 𝜇𝑘‖
2 − ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

‖(1 − 𝑡𝑖)(𝜇𝑘 − 𝜇𝑙)‖
2

Thus
𝐼𝑘𝑙 − 𝐵𝑘𝑙 = ∑

𝑖∣𝑡𝑖∈]0,
1
2 [

𝑡2𝑖 ‖𝜇𝑘 − 𝜇𝑙‖
2 + ∑

𝑖∣𝑡𝑖∈]
1
2 ,1[

(1 − 𝑡𝑖)2‖𝜇𝑘 − 𝜇𝑙‖
2,

𝐼𝑘𝑙 − 𝐵𝑘𝑙
‖𝜇𝑘 − 𝜇𝑙‖2

= ∑
𝑖∣𝑡𝑖∈]0,

1
2 [

𝑡2𝑖 + ∑
𝑖∣𝑡𝑖∈]

1
2 ,1[

(1 − 𝑡𝑖)2,

𝐼𝑘𝑙 − 𝐵𝑘𝑙
(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖2

=
∑𝑥𝑖∈𝒱𝑘

⟨𝑥𝑖 − 𝜇𝑘|𝜇𝑙 − 𝜇𝑘⟩
2
+ +∑𝑥𝑖∈𝒱𝑙

⟨𝑥𝑖 − 𝜇𝑙|𝜇𝑘 − 𝜇𝑙⟩
2
+

(𝑛𝑘 + 𝑛𝑙)‖𝜇𝑘 − 𝜇𝑙‖4
.
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7.2 Code

7.2.1 Implementation

Numerical experiments have been conducted in Python. The python scripts to reproduce the
simulations and figures are available at https://github.com/flheight/Spectral-Bridges. The Spectral
Bridge algorithm is implemented both in

• Python: https://pypi.org/project/spectral-bridges, and
• R: https://github.com/cambroise/spectral-bridges-Rpackage.

7.2.2 Affinity matrix computation

Taking a closer look at the second step of Algorithm 1 , that is the affinity matrix calculation
with a 𝑂(𝑛 × 𝑚 × 𝑑) time complexity, most operations can be parallelized leaving a single loop,
bundling together 𝑚2 dot products into only 𝑚 matrix multiplications, thus allowing for an efficient
construction in both high and low level programming languages. Though the complexity of the
algorithm remains unchanged, libraries such as Basic Linear Algebra Subprograms can render the
calculations orders of magnitude faster. Moreover, the symmetrical nature of the bridge affinity can
be used to effectively halve the computation time.

The calculation of the affinity matrix is highlighted by the Python code Listing 1. Though it could
be even more optimized, the following code snippet is approximately 200 times faster than a naive
implementation on a small dataset comprised of 𝑛 = 3594, 𝑑 = 2 points, and a value of 𝑚 = 250.
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[29] gmp_0.7-5 lifecycle_1.0.4 vctrs_0.6.5 evaluate_1.0.3
[33] glue_1.8.0 farver_2.1.2 purrr_1.0.4 rmarkdown_2.29
[37] tools_4.5.0 pkgconfig_2.0.3 htmltools_0.5.8.1
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Listing 1 Python code for affinity matrix computation
# Initialize the matrix as empty
affinity = np.empty((self.n_nodes, self.n_nodes))

# Center each region
X_centered = [

np.array(
X[kmeans.labels_ == i] - kmeans.cluster_centers_[i],
dtype=np.float32,
order="F",

)
for i in range(self.n_nodes)

]

# Cardinal calculation
counts = np.array([X_centered[i].shape[0] for i in range(self.n_nodes)])
counts = counts[None, :] + counts[:, None]

# Calculate the affinity
for i in range(self.n_nodes):

segments = np.asfortranarray(
kmeans.cluster_centers_ - kmeans.cluster_centers_[i]

)
dists = np.einsum("ij,ij->i", segments, segments)
dists[i] = 1

projs = sgemm(1.0, X_centered[i], segments, trans_b=True)
np.clip(projs / dists, 0, None, out=projs)
projs = np.power(projs, self.p)

affinity[i] = projs.sum(axis=0)

affinity = np.power((affinity + affinity.T) / counts, 1 / self.p)
affinity -= 0.5 * affinity.max()

# Scale and exponentiate
q10, q90 = np.quantile(affinity, [0.1, 0.9])

gamma = np.log(self.M) / (q90 - q10)
affinity = np.exp(gamma * affinity)
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