
ISSN 2824-7795

Reservoir Computing in R: a Tutorial
for Using reservoirnet to Predict Com-
plex Time-Series

Thomas Ferté Univ. Bordeaux, INSERM, INRIA SISTM, BPH, U1219, F-33000 Bordeaux, France,
Inserm, Inria

Bordeaux Hospital University Center, Pôle de santé publique, Service d’information médicale,
F-33000 Bordeaux, France, CHU de Bordeaux

Kalidou Ba Univ. Bordeaux, INSERM, INRIA SISTM, BPH, U1219, F-33000 Bordeaux, France,
Inserm, Inria

Dan Dutartre INRIA, F-33000 Bordeaux, France, Inria
Pierrick Legrand ENSC, 109 avenue Roul, 33400, Talence France, Bordeaux INP

INRIA, F-33000 Bordeaux, France, Inria
IMS, UMR CNRS 5218, IMS

Vianney Jouhet Inserm Bordeaux Population Health Research Center UMR 1219, team AHeaD,
F-33000 Bordeaux, Inserm

Bordeaux Hospital University Center, Pôle de santé publique, Service d’information médicale,
F-33000 Bordeaux, France, CHU de Bordeaux

Rodolphe Thiébaut Univ. Bordeaux, INSERM, INRIA, BPH, U1219, F-33000 Bordeaux, France,
Inserm, Inria

Bordeaux Hospital University Center, Pôle de santé publique, Service d’information médicale,
F-33000 Bordeaux, France, CHU de Bordeaux

Xavier Hinaut INRIA, F-33000 Bordeaux, France, Inria
Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, France, IMN
LaBRI, Univ. Bordeaux, Bordeaux INP, CNRS UMR 5800., LaBRI

Boris P Hejblum 1 Univ. Bordeaux, INSERM, INRIA SISTM, BPH, U1219, F-33000 Bordeaux,
France, Inserm, Inria

Date published: 2025-06-27 Last modified: 2025-06-27

Abstract

Reservoir Computing (RC) is a machine learning method based on neural networks that
efficiently process information generated by dynamical systems. It has been successful in solving
various tasks including time series forecasting, language processing or voice processing. RC
is implemented in Python and Julia but not in R. This article introduces reservoirnet, an
R package providing access to the Python API ReservoirPy, allowing R users to harness the
power of reservoir computing. This article provides an introduction to the fundamentals of RC
and showcases its real-world applicability through three distinct sections. First, we cover the
foundational concepts of RC, setting the stage for understanding its capabilities. Next, we delve
into the practical usage of reservoirnet through two illustrative examples. These examples
demonstrate how it can be applied to real-world problems, specifically, regression of COVID-19
hospitalizations and classification of Japanese vowels. Finally, we present a comprehensive
analysis of a real-world application of reservoirnet, where it was used to forecast COVID-19
hospitalizations at Bordeaux University Hospital using public data and electronic health records.
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1 Introduction

Reservoir Computing (RC) is a prominent machine learning method, proposed by Jaeger (2001), Maass,
Natschläger, and Markram (2002) and Lukoševičius and Jaeger (2009) that has gained significant
attention in recent years for its ability to efficiently process information generated by dynamical
systems. This innovative approach leverages the dynamics of a high-dimensional “reservoir” (we
define it below) to perform complex computations and solve various tasks based on the response
of this dynamical system to input signals. RC has demonstrated its efficacy in tackling various
challenges, encompassing pattern classification and time series forecasting in applications ranging
from electrocardiogram analysis to bird calls (Trouvain and Hinaut 2021), language processing
(Hinaut and Dominey 2013), power plants, internet traffic, stock prices, and beyond (Lukoševičius
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and Jaeger 2009; Tanaka et al. 2019).

Originally, the RC paradigm was implemented in artificial firing-rate neurons (“Echo State Networks”,
Jaeger (2001)) and spiking neurons (“Liquid State Machine”, Maass, Natschläger, and Markram (2002))
as a recurrent neural network (RNN) where the internal recurrent connections, denoted as the
reservoir, are randomly generated and only the output layer (named “read-out”) is trained. The
reservoir projects temporal input signals onto a high-dimensional feature space, facilitating the
learning of non-linear and temporal interactions. Thus, this recurrent layer contains high-dimensional
non-linear recombination of the inputs and past states: it is a “reservoir of computations” from
which useful information can be linearly extracted (or “read-out”) to provide the desired outputs.
This offers the advantage of decreasing the computing time compared to conventional RNNs while
consistently maintaining performance (Vlachas et al. 2020). Besides, this RC paradigm fostered
increasing interest thanks to its ability to be implemented on classical computers, as the hidden
recurrent layer can be kept untrained. A wide range of physical media can be also used to replace
it and Tanaka et al. (2019) recently reviewed this prolific field: from FPGA hardware (Penkovsky,
Larger, and Brunner 2018), to spin waves using magnetic properties (Nakane, Tanaka, and Hirose
2018), skrymions (Prychynenko et al. 2018) or optical implementations (Rafayelyan et al. 2020).
This provides interesting and potentially more efficient alternative to traditional machine learning
computing and might play an important role in the coming years (Yan et al. 2024).

RC leverages various hyperparameters to introduce prior knowledge about the relationship between
input variables and output targets. But because the connections within the reservoir are randomly
initialized, the same set of hyperparameters may exhibit diverse behaviors across different instances
of the reservoir connections. This unpredictability makes it challenging to anticipate the performance
of a particular hyperparameter setting, as identical settings may produce varying outcomes when
applied to distinct instances of the reservoir. Moreover, selecting the most suitable hyperparameters
often requires researchers to experiment with multiple combinations on a training dataset and
evaluate their performance on a separate test set2. Although this approach can be resource-intensive
and time-consuming, it is a compromise that is acceptable considering the rapid simulation capabilities
offered by RC. Furthermore, there is a current absence of implementation in R, rendering the method
challenging for users unfamiliar with Python (Trouvain and Hinaut 2022) or Julia (Martinuzzi et al.
2022).

Here, we offer comprehensive guidance to assist new users in maximizing the benefits of RC. Initially,
a broad introduction to reservoir computing is presented in Section 2, followed in Section 3 by a
tutorial on its application using reservoirnet, an R package built upon the ReservoirPy Python
module (Trouvain, Rougier, and Hinaut 2022; Trouvain and Hinaut 2022; Trouvain et al. 2020).
Section 3 then introduces the workflow usage on reservoirnet for RC with two basic use-cases,
and finally, in Section 4 we investigate the various challenges associated with an advanced case-
study leveraging RC for forecasting COVID-19 hospitalizations. This case-study exploration includes
detailed guidance on the modeling strategy, the selection of hyperparameters, and the implementation
process.

2 RC presentation

RC is a machine learning paradigm which is most often implemented as Echo State Networks (ESNs),
i.e. the firing-rate neuron version (Jaeger 2001). An ESN is described by three matrices of connectivity:
an input layer 𝑊𝑖𝑛, a recurrent layer 𝑊 and an output layer 𝑊𝑜𝑢𝑡. At each time step, the input vector
𝑢𝑡 is projected into the reservoir which is also combined with reservoir past state 𝑥(𝑡 − 1) through

2In this article, we employ the term “train set” to refer to the combined dataset consisting of both the training and
validation sets, which are cycled through in a cross-validation manner.
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the recurrent connections. The output 𝑦(𝑡) is linearly read-out from the reservoir. Input 𝑊𝑖𝑛 and
recurrent 𝑊 matrices are kept random; only the output matrix 𝑊𝑜𝑢𝑡 is trained in an offline or online
method. Often a ridge regression (i.e. a regularized linear regression) is used to obtain the desired
outputs 𝑦(𝑡) from the reservoir states 𝑥(𝑡). Figure 1 depicts the architecture. For simplicity, we will
use the term “reservoir computing” for “Echo State Network” in the remainder of the paper.

Figure 1: Reservoir computing is composed of an input layer, a reservoir and an output layer.
Connection between input layer and reservoir and inside reservoir are random. Only the output
layer is optimized based on a ridge regression. Adapted from Trouvain et al. (2020)

The input layer 𝑢(𝑡) is an 𝑀-dimension vector, where 𝑀 is the number of input time series, which
corresponds to the values of the input time series at time 𝑡 where 𝑡 = 1, … , 𝑇. The reservoir layer 𝑥(𝑡)
is an 𝑁𝑟𝑒𝑠-dimensional vector where 𝑁𝑟𝑒𝑠 is the number of nodes in the reservoir. The value 𝑥(𝑡) is
defined as follow:

𝑥(𝑡 + 1) = (1 − 𝛼)𝑥(𝑡) + 𝛼 𝑡𝑎𝑛ℎ (𝑊𝑥(𝑡) + 𝑊𝑖𝑛𝑢(𝑡 + 1)) . (1)

The leaking rate 𝛼 ∈ [0, 1] defines the update rate of the nodes. The closer 𝛼 is to 1, the more the
reservoir is sensitive to new inputs 𝑢(𝑡). Therefore, the reservoir state at time 𝑡 + 1 denoted 𝑥(𝑡 + 1)
depends on the reservoir state at the previous time 𝑥(𝑡) and the new inputs 𝑢(𝑡 + 1). The function
𝑡𝑎𝑛ℎ() represents the activation function, applied element-wise to each component of the vector,
ensuring that each node’s activation is scaled between −1 and 1. Both𝑊𝑖𝑛 and𝑊 are random matrices
of size 𝑁𝑟𝑒𝑠 × 𝑀 and 𝑁𝑟𝑒𝑠 × 𝑁𝑟𝑒𝑠 respectively.

The input-reservoir connection matrix (𝑊𝑖𝑛) and the intra-reservoir connection matrix (𝑊) are
generated in three steps. 𝑊𝑖𝑛 is generated using a Bernoulli (bimodal) distribution where each value
can be either −𝐼𝑠𝑐𝑎𝑙𝑒(𝑚) or 𝐼𝑠𝑐𝑎𝑙𝑒(𝑚) with an equal probability where 𝑚 = 1,… ,𝑀 corresponds to a
given feature in the input layer. The input scaling, denoted 𝐼𝑠𝑐𝑎𝑙𝑒, is a hyperparameter coefficient
common to all features from the input layer or specific to each feature 𝑚. In that case, the more
important the feature is, the greater should be its input scaling. 𝑊 is generated from a Gaussian
distribution 𝒩 (0, 1). Both 𝑊𝑖𝑛 and 𝑊 then undergo sparsification, where a connectivity mask is
applied to retain only 10% of the connections, enforcing sparsity. In a third step, the 𝑊 matrix is
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scaled according to the defined spectral radius, a hyperparameter defining the highest eigen value of
𝑊.

The final layer is a linear regression with ridge penalization where the explanatory features are the
reservoir state and the variable to be explained is the outcome to predict such that:

𝑊𝑜𝑢𝑡 = 𝑌𝑋 𝑇(𝑋𝑋 𝑇 + 𝜆𝐼 )−1.

Where x(t) and y(t) are accumulated in X and Y respectively such that:

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥(1)
𝑥(2)
...

𝑥(𝑇 )

⎤
⎥
⎥
⎥
⎦

and 𝑌 =
⎡
⎢
⎢
⎢
⎣

𝑦(1)
𝑦(2)
...

𝑦(𝑇 )

⎤
⎥
⎥
⎥
⎦

.

The parameter 𝜆 is the ridge penalization which aims to prevent overfitting. Additionally, one can also
connect the input layer to the output layer to the reservoir nodes. In that case, 𝑋 is the accumulation
of both such that:

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥(1), 𝑢(1)
𝑥(2), 𝑢(2)

...
𝑥(𝑇 ), 𝑢(𝑇 )

⎤
⎥
⎥
⎥
⎦

and 𝑌 =
⎡
⎢
⎢
⎢
⎣

𝑦(1)
𝑦(2)
...

𝑦(𝑇 )

⎤
⎥
⎥
⎥
⎦

.

Overall, there are four main hyperparameters to be chosen by the user: i) the leaking rate which
defines the memory of the RC, ii) the input scaling which defines the relative importance of the
features, iii) the spectral radius which defines the connections of the neurons inside the reservoir
which in turn defines the degree of non-linear combination of features, and iv) the ridge penalization
which controls the degree of overfitting. The choice of hyperparameters often requires the user to
evaluate the performance of different combinations of hyperparameters on a validation set before
selecting the optimal combination to forecast on the test set.

3 Usage workflow

In this section, we will cover the basics of reservoirnet use including installation, classification and
regression. A more in depth description is provided in Section 4 with the covid-19 forecast use case.

3.1 Installation

reservoirnet is an R package making the Python module ReservoirPy easily callable from R using
reticulate R package Ushey, Allaire, and Tang (2024). It is available on CRAN (see https://cran.r-
project.org/package=reservoirnet) and can be installed using:

# Install reservoirnet package from CRAN
install.packages("reservoirnet")

Alternatively, it can also be installed from GitHub:

# Install reservoirnet package from GitHub
devtools::install_github(repo = "reservoirpy/reservoirR")

For reservoirnet to work, it will require Python version 3.8 or higher, along with the reservoirpy
module which can be installed with the install_reservoirpy() function:

reservoirnet::install_reservoirpy()

Reservoir Computing (RC) is well suited to both regression and classification tasks. We will introduce
a simple example for both task.
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3.2 Package workflow overview

Theworkflow of reservoirnet is described in Figure 2. A reservoirmodel is created by the association
of an input layer (a matrix), a reservoir, and an output layer. Both the reservoir and the output layer
are created using the function reservoirnet::createNode() by specifying the node type (i.e., either
Reservoir or Ridge).

This function accepts several arguments to specify the hyperparameters of the reservoir and will be
detailed in future sections. After the reservoir and output layer are created, they can be connected
using the %>>% operator, a specific pipe operator dedicated to reservoirnet. The model can then be
fitted using reservoirR_fit() and used to make predictions on a new dataset using predict_seq().

3.3 Basic regression use-case

3.3.1 Covid-19 data

In this first use-case, we will introduce the fundamental usage of the reservoirnet package. This
demonstration will be conducted using the COVID-19 dataset that is included within the package.
These data encompass hospitalization, positive RT-PCR (Reverse Transcription Polymerase Chain
Reaction) results, and overall RT-PCR data sourced from Santé Publique France, which are publicly
available on data.gouv.fr (for further details, refer to help(dfCovid)). Our primary objective is to
predict the number of hospitalized patients 14 days into the future. To accomplish this, we will
initially train our model on data preceding the date of January 1, 2022, and then apply it to forecast
values using the following dataset.

We can proceed by loading useful packages - namely ggplot2 Wickham, Navarro, and Pedersen
(2018) and dplyr Wickham et al. (2023), data and define the task:

# Load usefull packages
library(dplyr)
library(ggplot2)
library(reservoirnet)
# load dfCovid data from the reservoirnet package which contains Covid data
data("dfCovid")
# Set the forecast horizon to 14 days
dist_forecast = 14
# Set the train-test split to 2022-01-01
traintest_date = as.Date("2022-01-01")

Due to the substantial fluctuations observed in both RT-PCRmetrics, our initial step involves applying
a moving average computation over the most recent 7-day periods for these features. Additionally,
we augment the dataset by introducing an outcome column and an outcomeDate column, which
will serve as valuable inputs for model training. Moreover, we calculate the outcome_deriv as the
difference between the outcome and the number of hospitalized patients (hosp), representing the
variation in hospitalization in relation to the current count of hospitalized individuals. The resulting
smoothed data is visualized in Figure 3.

dfOutcome <- dfCovid %>%
# outcome at 14 days
mutate(outcome = lead(x = hosp, n = dist_forecast),

# Create a new column 'outcome' which contains the number of
# hospitalizations ('hosp') shifted forward by 'dist_forecast' days
# (14 days). This represents the outcome we want to predict.

6



Figure 2: Worflow of reservoirnet.
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outcomeDate = date + dist_forecast,
# Create a new column 'outcomeDate' which is the current date plus the
# forecast period (14 days).

outcome_deriv = outcome - hosp) %>%
# Create a new column 'outcome_deriv' which is the difference between
# the predicted outcome and current hospitalizations.
# This represents the change in hospitalizations over the forecast
# period.

# rolling average for tested and positive_pcr
mutate_at(.vars = c("Positive", "Tested"),

.funs = function(x) slider::slide_dbl(.x = x,
.before = 6,
.f = mean))

# Apply a rolling mean (7-day average) to the 'Positive' and
# 'Tested' columns.
# The 'slider::slide_dbl' function is used to calculate the mean
# over a window of 7 days (current day + 6 days before). This
# smooths out daily fluctuations and provides a better trend
# indicator.

hosp
P

ositive
Tested

2021 2022 2023

0

500

1000

1500

2000

0

10000

20000

30000
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30000

60000

90000

date

va
lu

e

Figure 3: Hospitalizations, number of positive RT-PCR and number of RT-PCR of Bordeaux University
Hospital.

3.3.2 First reservoir

The objective of this task is to train a RC model using the input features to forecast the number of
hospitalized patients 14 days ahead, as illustrated in Figure Figure 4.

Setting a reservoir is done with the createNode() function. The important hyperparameters are the
following:
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Figure 4: Regression use case: Forecasting the number of hospitalized patients 14 days ahead.

• Number of nodes (units): it corresponds to the number of nodes inside the reservoir. Usually,
the more the better, but more nodes increases the computation time.

• Leaking rate (lr): the leaking rate corresponds to the balance between the new inputs and the
previous state. A leaking rate of 1 only consider information from new inputs.

• Spectral radius (sr): the spectral radius is the largest eigenvalue in modulus of the reservoir
connectivity matrix. A small spectral radius induces stable dynamics inside the reservoir, a
high spectral radius induces a chaotic regime inside the reservoir.

• Input scaling (input_scaling): the input scaling is a gain applied to the input features of the
reservoir.

• Warmup (warmup): it corresponds to the number of time step during which the data are
propagating into the reservoir but not used to fit the output layer. This hyperparameter is set
in the reservoirR_fit() function.

In addition, we can set the seed (seed). Because the reservoir connections are set at random, setting
the seed is a good approach to ensure reproducibility.

For this part of the tutorial, we will set the hyperparameter at a given value. Hyperparameter
optimization will be detailed at Section 4.

# Create a reservoir computing node using the 'createNode' function from the
# reservoirnet package.
# Arguments:
# - nodeType = "Reservoir": Specify the type of node to be a reservoir.
# - seed = 1: Set the seed for reproducibility, ensuring consistent results
# when the model is run multiple times.
# - units = 500: Set the number of reservoir units (neurons) to 500.
# - lr = 0.7: Set the leakage rate (lr) of the reservoir, which controls how
# quickly the reservoir state decays over time.
# - sr = 1: Set the spectral radius (sr) of the reservoir, which influences the
# stability and memory capacity of the reservoir.

9



# - input_scaling = 1: Set the input scaling factor, which scales the input
# signal before it is fed into the reservoir.

reservoir <- reservoirnet::createNode(nodeType = "Reservoir",
seed = 1,
units = 500,
lr = 0.7,
sr = 1,
input_scaling = 1)

Then we can feed the data to the reservoir and see the activation state of the reservoir 𝑥(𝑡). To do so,
we first prepare the data and transform it to a matrix.

## select explanatory features of the train set and transform it to an array
X <- dfOutcome %>%
filter(outcomeDate < traintest_date) %>%
select(hosp, Positive, Tested) %>%
as.matrix()

Then we run the predict_seq() function. It takes as input a node (i.e a reservoir or a reservoir
associated with an output layer) and the feature matrix.

# Generate the state of the reservoir using the 'predict_seq' function from the
# reservoirnet package.
# Arguments:
# - node = reservoir: The reservoir computing node created earlier.
# - X = X: The input data matrix containing the features 'hosp', 'Positive',
# and 'Tested'.
# The function computes the state of the reservoir for each time step in the
# input sequence, effectively transforming the input data into the reservoir's
# high-dimensional state space.

reservoir_state <- predict_seq(node = reservoir, X = X)

Now we can visualize node activation using the plot() function presented at Figure 5 .

# Plot the reservoir state activation over time
plot(reservoir_state)
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Figure 5: 20 random nodes activation over time.

Numerous nodes within the system exhibit a consistent equilibrium state. The challenge arises when
the output layer attempts to extract knowledge from these nodes, as they do not convey meaningful
information. This issue can be attributed to the disparate scales of the features. To address this
concern, a practical approach involves normalizing the features by dividing each of them by their
respective maximum values, thereby scaling them within the range of −1 to 1 by dividing by the
maximum of the absolute value. Of note, here the features will be scaled between 0 and 1 because all
features are positive.

# Standardise features by dividing by the maximum value can improve performance
# After standardisation, all features are on a similar scale which helps RC
stand_max <- function(x) return(x/max(abs(x)))
# scaled features
Xstand <- dfOutcome %>%
filter(date < traintest_date) %>%
select(hosp, Positive, Tested) %>%
mutate_all(.funs = stand_max) %>%
as.matrix() %>%
as.array()

We then feed them to the reservoir and plot the node activation again. Compared to Figure 5, the
obtained node activation at Figure 6 shows interesting trend outputs as no node seems saturated.

# feed the scaled features to the reservoir
reservoir_state_stand <- predict_seq(node = reservoir,

X = Xstand,
reset = TRUE)

# plot the output
plot(reservoir_state_stand)
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Figure 6: 20 random node activation over time. Scaled features.

3.3.3 Forecast

In order to train the reservoir, we should train the last layer which linearly combines the neuron’s
output.

3.3.3.1 Set the ESN

Initially, we establish the output layer with the createNode() function, incorporating a ridge penalty
set at 1e3. It’s important to note that this hyperparameter can be subject to optimization, a topic
that will be explored in Section 4. This parameter plays a pivotal role in fine-tuning the model’s
conformity to the data. When set excessively high, the risk of underfitting arises, whereas setting it
too low can lead to overfitting. We connect the output layer to the reservoir, with the %>>% operator,
making the model ready to be trained.

readout <- reservoirnet::createNode(nodeType = "Ridge",
ridge = 1e3)

# Create a readout node using ridge regression with the 'createNode' function
# from the reservoirnet package.
# Arguments:
# - nodeType = "Ridge": Specify the type of node to be a ridge regression
# readout.
# - ridge = 1e3: Set the regularization parameter (ridge) for the ridge
# regression to 1000.
# Ridge regression is used to prevent overfitting by adding a penalty on the
# size of the coefficients.

model <- reservoir %>>% readout
# Link the reservoir and readout nodes to form a complete reservoir computing
# model. The '%>>%' operator connects the high-dimensional state generated by
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# the reservoir to the readout layer, allowing the model to learn the mapping
# from the reservoir states to the target outputs.

3.3.3.2 Set the data

First we separate the train set on which we will learn the ridge coefficients and the test set on which
we will make the forecast. We define the train set to be all the data before 2022-01-01 and the test
data to be all the data to have forecast both on train and test sets.

# Perform some data management to isolate train and test sets
# train set
dftrain <- dfOutcome %>% filter(outcomeDate <= traintest_date)
yTrain <- dftrain %>% select(outcome)
yTrain_variation <- dftrain %>% select(outcome_deriv)
xTrain <- dftrain %>% select(hosp, Positive, Tested)
# test set
xTest <- dfOutcome %>% select(hosp, Positive, Tested)

We standardize with the same formula as seen before. We learn the standardization on the training
set and apply it on the test set. Then we convert the dataframe to matrix.

# copy train and test sets
xTrainstand <- xTrain
xTeststand <- xTest
# standardise based on training set values
ls_fct_stand <- apply(xTrain,

MARGIN = 2,
FUN = function(x) function(feature) feature/(max(x)))

lapply(X = names(ls_fct_stand),
FUN = function(x){

xTrainstand[,x] <<- ls_fct_stand[[x]](feature = xTrain[,x])
xTeststand[,x] <<- ls_fct_stand[[x]](feature = xTest[,x])
return()

})
# convert to array
lsdf <- lapply(list(yTrain = yTrain,

yTrain_variation = yTrain_variation,
xTrain = xTrainstand,
xTest = xTeststand),

function(x) as.matrix(x))

3.3.3.3 Train the model and predict

We then feed the reservoir with the train set using the reservoirR_fit() function. To do so, we set
a warmup of 30 days during which the data are propagating into the reservoir but not used to fit the
output layer.

### train the reservoir ridge output
fit <- reservoirnet::reservoirR_fit(node = model,

X = lsdf$xTrain,
Y = lsdf$yTrain,
warmup = 30,
reset = TRUE)
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Now that the ridge layer is trained, we can forecast using the predict_seq() function. We set the
parameter reset to TRUE in order to clean the reservoir from the data used by the training set.

# Forecast with the trained reservoir on the test data
vec_pred <- reservoirnet::predict_seq(node = fit$fit,

X = lsdf$xTest,
reset = TRUE)

# Make figure to represent forecast on the train and test sets.

dfOutcome %>%
mutate(pred = vec_pred) %>%
na.omit() %>%
ggplot(mapping = aes(x = outcomeDate)) +
geom_line(mapping = aes(y = outcome,

color = "observed")) +
geom_line(mapping = aes(y = pred,

color = "forecast")) +
annotate("rect",

xmin = traintest_date,
xmax = max(dfOutcome$outcomeDate, na.rm = T),
ymin = 0,
ymax = max(dfOutcome$outcome, na.rm = T)*1.1,
alpha = .2) +

annotate("text", label = "Test set",
x = as.Date("2022-08-01"), y = 2200, size = 7) +

annotate("text", label = "Train set",
x = as.Date("2021-03-01"), y = 2200, size = 7) +

scale_color_manual(values = c("#3772ff", "#080708")) +
theme_minimal() +
labs(color = "", x = "Date", y = "Hospitalizations")
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Figure 7: Forecast

We observe that the model forecast at Figure 7 is not fully accurate, both on the test set and the
train set. In that case, one option could be to reduce ridge penalization to fit more closely the data,
the optimization of ridge hyperparameter will be discussed at Section 4. Another possibility is to
ease the learning of the algorithm by forecasting the variation of the hospitalization instead of
the number of hospitalized patients. For that step, we will learn on the outcome_deriv contained
in yTrain_variation data which is defined outcome as outcome_deriv = outcome - hosp. As
depicted at Figure 8, this strategy improved the model forecast.

## Fit reservoir on outcome variation instead of raw outcome
fit2 <- reservoirnet::reservoirR_fit(node = model,

X = lsdf$xTrain,
Y = lsdf$yTrain_variation,
warmup = 30,
reset = TRUE)

## Get the forecast on the test set
vec_pred2_variation <- reservoirnet::predict_seq(node = fit2$fit,

X = lsdf$xTest,
reset = TRUE)

## Transform the outcome variation forecast into hospitalization forecast
vec_pred2 <- vec_pred2_variation + xTest$hosp

## Plot the results
dfOutcome %>%
mutate(Raw = vec_pred,

Variation = vec_pred2) %>%
tidyr::pivot_longer(cols = c(Raw, Variation),

names_to = "Outcome_type",
values_to = "Forecast") %>%

na.omit() %>%

15



ggplot(mapping = aes(x = outcomeDate)) +
geom_line(mapping = aes(y = outcome,

color = "observed")) +
geom_line(mapping = aes(y = Forecast,

color = "Forecast")) +
annotate("rect",

xmin = traintest_date,
xmax = max(dfOutcome$outcomeDate, na.rm = T),
ymin = 0,
ymax = max(dfOutcome$outcome, na.rm = T)*1.1,
alpha = .2) +

annotate("text", label = "Test set",
x = as.Date("2022-08-01"), y = 2200, size = 5) +

annotate("text", label = "Train set",
x = as.Date("2021-03-01"), y = 2200, size = 5) +

facet_wrap(Outcome_type ~ .,
labeller = label_bquote(cols = "Outcome" : .(Outcome_type))) +

scale_color_manual(values = c("#3772ff", "#080708")) +
theme_minimal() +
theme(legend.position = "bottom") +
labs(color = "", x = "Date", y = "Hospitalizations")
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Figure 8: Covid-19 hospitalizations forecast. The model is either trained to forecast the number of
hospitalizations (denoted Raw) or the variation of the hospitalizations compared to current level of
hospitalisation (denoted Variation)
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3.4 Classification

3.4.1 The Japanese vowel dataset

This example is largely inspired from the classification tutorial of reservoirpy. To illustrate the
classification task, we will use the Japanese vowel dataset (Kudo, Toyama, and Shimbo (1999)). The
data can be loaded from reservoirnet as follow

japanese_vowels <- reservoirnet::generate_data(dataset = "japanese_vowels")[[1]]

For convenience, the data are also available in the data folder:

# Get the Japanese vowels dataset from the local data file
# (precomputed to avoid network issues in CI environments)
# The dataset contains preprocessed features and labels for classification.
# Then we isolate train and test sets
japanese_vowels <- readRDS("data/japanese_vowels.rds")
X_train <- japanese_vowels$X_train
Y_train <- japanese_vowels$Y_train
X_test <- japanese_vowels$X_test
Y_test <- japanese_vowels$Y_test

The dataset comprises 640 vocalizations of the Japanese vowel æ, contributed by nine distinct
speakers. Each vocalization represents a time series spanning between 7 and 29 time steps, encoded
as a 12-dimensional vector denoting the Linear Prediction Coefficients (LPC). A visual representation
of six distinct utterances from the test set, originating from three different speakers, is depicted in
Figure 9.
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Figure 9: Vowel dataset, sample with 3 speakers and 2 utterance each.

The primary objective involves the attribution of each utterance to its respective speaker, this is
denoted as classification or sequence-to-vector encoding. The secondary objective involves the
attribution of each time step of each utterance to its speaker, this is denoted as transduction or
sequence-to-sequence encoding. While this second approach may seem somewhat superfluous in
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Figure 10: Classification use-case, identifying the speaker from an utterance.

this context, it could be useful, for example, in cases where multiple speakers take turns speaking,
allowing us to identify which sequence belongs to each individual speaker. Figure Figure 4 illustrates
this task.

3.4.2 Classification (sequence-to-vector model)

The first approach is the sequence-to-vector encoding. For this task we aim to predict the speaker of
the whole utterance (i.e the label is assigned to the whole sequence). We first start by creating the
reservoir and the output layer using createNode() function.

reservoir <- reservoirnet::createNode("Reservoir", units = 500,
lr=0.1, sr=0.9,
seed = 1)

# Create a reservoir computing node with 500 units using the 'createNode'
# function from the reservoirnet package.
# Arguments:
# - units = 500: Set the number of reservoir units (neurons) to 500.
# - lr = 0.1: Set the leakage rate (lr) of the reservoir to 0.1, controlling
# how quickly the reservoir state decays over time.
# - sr = 0.9: Set the spectral radius (sr) of the reservoir to 0.9, influencing
# the stability and memory capacity of the reservoir.
# - seed = 1: Set the seed for reproducibility, ensuring consistent results
# when the model is run multiple times.
readout <- reservoirnet::createNode("Ridge",ridge=1e-6)
# Create a readout node using ridge regression with the 'createNode' function
# from the reservoirnet package.
# Arguments:
# - ridge = 1e-6: Set the regularization parameter (ridge) for the ridge
# regression to 1e-6.
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# Ridge regression is used to prevent overfitting by adding a penalty on the
# size of the coefficients.

To perform this task, we need to modify the training and testing processes. Leveraging the inherent
inertia of the reservoir, information from preceding time steps is preserved, effectively endowing the
RC with a form of memory. Consequently, the final state vector encapsulates insights gathered from
all antecedent states. In the context of the sequence-to-vector encoding task, only the final state is
used. To simplify this process, we introduce the last_reservoir_state() function, which extracts
the final reservoir state. This process is executed as follows:

states_train <- reservoirnet::last_reservoir_state(node = reservoir, X = X_train)

Then, we use only the final state for prediction. We first extract the final state using the
last_reservoir_state() function and then use the trained readout to predict the vowel using the
predict_seq() function with the seq_to_vec parameter set to TRUE:

# Fit the reservoir using the last state vector (each observation is the whole
# vowel sequence)
res <- reservoirnet::reservoirR_fit(node = readout, X = states_train, Y = Y_train)

Then we can perform the prediction using only the final state. We first get the final state using
the last_reservoir_state() function and use the trained readout to predict the vowel using the
predict_seq() function with the seq_to_vec parameter set to TRUE.

# The operation is repeated for the test set:
states_test <- reservoirnet::last_reservoir_state(node = reservoir, X = X_test)
Y_pred <- reservoirnet::predict_seq(node = readout, X = states_test, seq_to_vec = TRUE)

Figure 11 shows the prediction for the 6 utterances depicted at Figure 9 where the model correctly
identifies the speaker.

# A figure represents the performance on the test set
dfplotseqtovec <- lapply(vec_sample,

FUN = function(i){
speaker <- which(Y_test[[i]][1,] == 1)
Y_pred[[i]] %>%
as.data.frame() %>%
tidyr::pivot_longer(cols = everything(),

names_to = "pred_speaker",
values_to = "prediction") %>%

mutate(pred_speaker = gsub(x = pred_speaker,
pattern = "V", "")) %>%

mutate(speaker = speaker, .before = 1,
uterrance = i,
target = speaker == pred_speaker) %>%

return()
}) %>%

bind_rows()

ggplot(dfplotseqtovec,
mapping = aes(x = pred_speaker,

y = prediction,
fill = target)) +

geom_bar(stat = "identity") +
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facet_wrap(uterrance ~ speaker,
labeller = label_bquote(cols = "speaker" : .(speaker)),
ncol = 2) +

scale_fill_manual(values = c("#BDBDBD", "#A3CEF1")) +
theme_minimal() +
theme(legend.position = "none") +
labs(y = 'Score',

x = "Speaker")
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Figure 11: Prediction in a sequence-to-sequence approach 6 samples with 3 speakers and 2 utterance
each. The speaker to predict is depicted in blue. For each of the 6 utterance, the model correctly
identifies the speaker.

Then, we can also compute the overall accuracy:

# The overall accuracy is evaluated
accuracy <- function(pred, truth) mean(pred == truth)

Y_pred_class <- sapply(Y_pred,
FUN = function(x) apply(as.matrix(x),1,which.max))

Y_test_class <- sapply(Y_test,
FUN = function(x) apply(as.matrix(x),1,which.max))

score <- accuracy(pred = Y_test_class, truth = Y_pred_class)

print(paste0("Accuracy: ", round(score * 100,3) ,"%"))

[1] "Accuracy: 92.703%"
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3.4.3 Transduction (sequence-to-sequence model)

For this task, the goal is to predict the speaker for each time step of each utterance. The first
step is to get the data where the label is repeated for each time step. This is easily done with the
repeat_targets argument as follow:

# For this new task where we want to forecast for each time step (instead of each utterance)
# we start by getting the data in the appropriate format
# Then we split the train and test data
# Using precomputed dataset to avoid network issues in CI environments
japanese_vowels_repeat <- readRDS("data/japanese_vowels_repeat.rds")
japanese_vowels <- japanese_vowels_repeat$japanese_vowels
X_train <- japanese_vowels$X_train
Y_train <- japanese_vowels$Y_train
X_test <- japanese_vowels$X_test
Y_test <- japanese_vowels$Y_test

Then we can train a simple Echo State Network to solve this task. For this example, we will connect
both the input layer and the reservoir layer to the readout layer, which is performed by the %>>%
operator. This direct connection between the input layer and the output layer can be particularly
useful when the relationship between the input sequences and the output is partially linear, potentially
improving performance. Section 4 will explore this aspect in more detail through the SARS-CoV-2
prediction task.

# Create an input, a reservoir and an output layers
source <- createNode("Input")
readout <- createNode("Ridge",ridge=1e-6)
reservoir <- createNode("Reservoir",units = 500,lr=0.1, sr=0.9, seed = 1)
# Connect the input layer to the reservoir and connect both the input layer and
# the reservoir to the output layer
model <- list(source %>>% reservoir, source) %>>% readout

We can then fit the model and predict the labels for the test data. The reset parameter is set to TRUE
to remove information from the reservoir from the training process.

# Fit the RC model
model_fit <- reservoirnet::reservoirR_fit(node = model,

X = X_train,
Y = Y_train,
warmup = 2)

# Predict with the fitted model
Y_pred <- reservoirnet::predict_seq(node = model_fit$fit,

X = X_test,
reset = TRUE)

From the Y_pred and Y_test we represent at Figure 12 the predictions for the same patients as in
Figure 9.

# Make a graph with a label for each time of each utterance
dfplotseqtoseq <- lapply(vec_sample,

FUN = function(i){
speaker <- which(Y_test[[i]][1,] == 1)
Y_pred[[i]] %>%
as.data.frame() %>%
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tibble::rowid_to_column(var = "Time") %>%
tidyr::pivot_longer(cols = -Time,

names_to = "pred_speaker",
values_to = "prediction") %>%

mutate(pred_speaker = gsub(x = pred_speaker,
pattern = "V", ""),

speaker = speaker,
uterrance = i,
.before = 1) %>%

return()
}) %>%

bind_rows()

ggplot(dfplotseqtoseq, mapping = aes(x = Time,
y = pred_speaker,
fill = prediction)) +

geom_tile() +
facet_wrap(uterrance ~ speaker,

labeller = label_bquote(cols = "speaker" : .(speaker)),
ncol = 2) +

scale_fill_gradient2(low = "#8ECAE6", high = "#FB8500", mid = "#023047",
midpoint = 0) +

theme_minimal() +
labs(y = 'Predicted speaker',

fill = "Prediction score")
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Figure 12: Prediction in a sequence-to-sequence approach 6 samples with 3 speakers and 2 utterance
each. The higher the score of the speaker, the lighter the color.

For those 6 utterances, the model correctly identify the speaker for most of the time steps. We can
then evaluate the overall accuracy of the model:

# Compute the accuracy
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Y_pred_class <- sapply(Y_pred, FUN = function(x) apply(as.matrix(x),
1,
which.max))

Y_test_class <- sapply(Y_test, FUN = function(x) apply(as.matrix(x),
1,
which.max))

score <- accuracy(array(unlist(Y_pred_class)), array(unlist(Y_test_class)))

print(paste0("Accuracy: ", round(score * 100,3) ,"%"))

[1] "Accuracy: 92.456%"

4 Avanced case-study: Covid-19 hospitalizations forecast

4.1 Introduction

Since late 2020, millions of cases of SARS-CoV-2 infection have been documented across the globe
(World Health Organisation 2020; COVID-19 Cumulative Infection Collaborators 2022; Carrat et al.
2021). This ongoing pandemic has exerted significant strain on healthcare systems, resulting in a surge
in hospitalizations. This surge, in turn, necessitated modifications to the healthcare infrastructure and
gave rise to population-wide lockdown measures aimed at preventing the saturation of healthcare
facilities (Simões et al. 2021; Hübner et al. 2020; Kim et al. 2020). The capacity to predict the
trajectory of the epidemic on a regional scale is of paramount importance for effective healthcare
system management.

Numerous COVID-19 forecasting algorithms have been proposed using different methods (e.g en-
semble, deep learning, mechanistic), yet none has proven entirely satisfactory (Cramer et al. 2022;
Rahimi, Chen, and Gandomi 2021). In France, short-term forecasts with different methods have
been evaluated with similar results (Paireau et al. 2022; Carvalho et al. 2021; Mohimont et al. 2021;
Pottier 2021). In this context a machine learning algorithm based on linear regression with elastic-net
penalization, leveraging both Electronic Health Records (EHRs) and public data, was implemented at
Bordeaux University Hospital (Ferté et al. 2022). This model, which aimed at forecasting the number
of hospitalized patients at 14 days, showed good performance but struggled to accurately anticipate
dynamic shifts of the epidemic.

RC has been used in the context of covid-19 epidemic forecast (Kmet and Kmetova 2019; Liu et
al. 2023; Ray, Chakraborty, and Ghosh 2021; Zhang et al. 2023; Ghosh et al. 2021). Among them,
Ghosh et al. (2021), Liu et al. (2023) and Ray, Chakraborty, and Ghosh (2021) used it to forecast
epidemic, Zhang et al. (2023) performed sentiment analysis and Kmet and Kmetova (2019) used
it to solve optimal control related to vaccine. The evaluation of RC for epidemic forecast showed
promising results in all approaches, being competitive with Long-Short Term Memory (LSTM) and
Feed-Forward Neural Network (FFNN) in Ray, Chakraborty, and Ghosh (2021). However, the test
period was short for Ghosh et al. (2021)} (21 and 14 days) and Ray, Chakraborty, and Ghosh (2021)
(86 days) making it difficult to evaluate the behavior of the methods during epidemic dynamic shift.
This was not the case for Liu et al. (2023) (6 months) but they implemented daily ahead forecast
which would be difficult to use to manage a hospital. Finally, all three implementations used only
one time series as input whereas it has been shown that using different data sources could improve
forecast Ferté et al. (2022). Therefore, it is still difficult to assess the usefulness of RC over a large
period and using many time series as inputs.

RC can be viewed as an extension of penalized linear regression, where inputs undergo processing by a
reservoir, introducing the capacity for memory and non-linear combinations. Given the effectiveness
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of penalized linear regression in COVID-19 forecasting, as highlighted in Ferté et al. (2022), and the
promising results exhibited by RC in epidemic forecasting, as demonstrated in studies such as Ghosh
et al. (2021), Liu et al. (2023), and Ray, Chakraborty, and Ghosh (2021), we have opted to employ RC
for the prediction of hospitalizations at 14 days at the University Hospital of Bordeaux.

The aim of this study is to showcase the use of reservoirnet for an advanced use case in forecasting
the SARS-CoV-2 pandemic in R. Several architectural choices will be evaluated, such as the connection
between the input layer and the output layer, and the use of either individual input scaling per feature
or a common input scaling. The performance of Reservoir Computing (RC) will be compared with
elastic-net penalized regression (identified as the optimal model in Ferté et al. (2022)), while a more
in-depth comparison of performance against other methods can be found in Ferté, Dutartre, Hejblum,
Griffier, Jouhet, Thiébaut, Legrand, et al. (2024).

4.2 Methods

4.2.1 Data

The study utilized aggregated data spanning from May 16, 2020, to January 17, 2022, regarding
the COVID-19 epidemic in France, drawing from various sources to enhance forecasting accuracy.
These sources encompassed epidemiological statistics from Santé Publique France, weather data
from the National Oceanic and Atmospheric Administration (NOAA), both providing department-
level data (Smith, Lott, and Vose 2011; Etalab 2020) and Electronic Health Record (EHR) data from
the Bordeaux Hospital providing hospital-level data. All data were daily updated. Santé Publique
France data included information on hospitalizations, RT-PCR tests, positive RT-PCR results, variant
prevalence, and vaccination data, categorized by age groups. NOAA data contributed temperature,
wind speed, humidity, and dew point data, allowing for the computation of the COVID-19 Climate
Transmissibility Predict Index (Roumagnac et al. 2021). EHRs data included hospitalizations, ICU
admissions, ambulance service records, and emergency unit notes, with relevant COVID-19-related
concepts extracted from the notes. Data are discussed more in depth in Ferté et al. (2022).

First derivative over the last 7 days were computed to enrich model information. To take into account
measurement error and daily noise variation, data were smoothed using a local polynomial regression
with a span of 21 days. As previously described, input features were scaled between -1 and 1 by
dividing the observed value by the maximum of the absolute value of the given input feature.

All data are publicly available. Weather data can be obtained from Smith, Lott, and Vose (2011) using
R package worldmet (Carslaw 2023). Vaccine data can be downloaded from Etalab (2020). EHRs data
can be downloaded on dryad (Ferté et al. 2023). For privacy issues, publicly available EHRs data
below 10 patients were obfuscated to 0. For convenience, all data were downloaded, merged and
provided as replication material.

4.2.2 Evaluation framework

The task was to forecast 14 days ahead the number of hospitalized patients. As seen at Section 3.3,
we will train the model to predict the variation of hospitalization, denoted as ℎ𝑜𝑠𝑝, defined as
𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡+14 = ℎ𝑜𝑠𝑝𝑡+14 − ℎ𝑜𝑠𝑝𝑡 with 𝑡 = 1, ..., 𝑇. Metrics computation and visualizations will be
performed on the predicted number of hospitalizations denoted as ̂ℎ𝑜𝑠𝑝𝑡+14 = ̂𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡+14 + ℎ𝑜𝑠𝑝𝑡.

The dataset was separated into two periods. First period from May 16, 2020 to March 1, 2021 served
to identify relevant hyperparameters. Remaining data was used to evaluate the model performance.

The performance of the model was evaluated according to several metrics:

• the mean absolute error: MAE = 1
𝑇 ∑

𝑇
𝑡=1 | ̂ℎ𝑜𝑠𝑝𝑡+14 − ℎ𝑜𝑠𝑝𝑡+14|.
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• the median relative error: MRE = median (|
̂ℎ𝑜𝑠𝑝𝑡+14−ℎ𝑜𝑠𝑝𝑡+14
ℎ𝑜𝑠𝑝𝑡+14

|).

• themean absolute error to baseline: MAEB = 1
𝑇 ∑

𝑇
𝑡=1 (| ̂ℎ𝑜𝑠𝑝𝑡+14 − ℎ𝑜𝑠𝑝𝑡+14| − |ℎ𝑜𝑠𝑝𝑡 − ℎ𝑜𝑠𝑝𝑡+14|).

• the median relative error to baseline: MREB = median (|
̂ℎ𝑜𝑠𝑝𝑡+14−ℎ𝑜𝑠𝑝𝑡+14
ℎ𝑜𝑠𝑝𝑡−ℎ𝑜𝑠𝑝𝑡+14

|))

Median was chosen over mean for 𝑀𝑅𝐸 and 𝑀𝑅𝐸𝐵 because those metrics tend to have extremely
high values when the denominator is close to 0 (i.e when the number of hospitalized patients is close
to 0 or the number of patients hospitalized at 14 days is close to the current number of hospitalized
patients respectively). 𝑀𝐴𝐸𝐵 and 𝑀𝑅𝐸𝐵 compare model performance to a baseline model which
predicts the current number of hospitalized patients at 14 days. Those metrics help to determine the
information added by the model and is a good baseline as covid-19 forecast model do not always
outperform this basic forecast (Cramer et al. (2022)).

Because the outcome is obfuscated below 10 hospitalizations for privacy reason, we set both the
outcome and the forecast to 10 when the observed value was 0 or the forecasted value was below 10
when evaluating the model performance.

4.2.3 Models

We compared RC to elastic-net penalized regression (denoted as Enet). Furthermore we evaluated
RC based on several architectures. First we compared RC with a single input scaling common to all
features and a RC with a specific input scaling per feature. Second we compared RC where the input
layer is connected to the output layer in addition to the connection between reservoir and output
layer. Therefore, five models were evaluated:

• Elastic-net penalized regression denoted Enet
• RC with a single input scaling and no connection between input and ouput layers denoted
Common IS R %»% O

• RCwith a single input scaling and connection between input and ouput layers denoted Common
IS I+R %»% O

• RC with multiple input scaling and no connection between input and ouput layers denoted
Multiple IS R %»% O

• RCwithmultiple input scaling and connection between input and ouput layers denotedMultiple
IS I+R %»% O

Because of the randomness of the reservoir, we took the median forecast of 10 reservoir on the train
set to evaluate the performance of a given hyperparameter set. On the test set we aggregated the
forecast of 40 reservoirs, each of them having one of the 40 best hyperparameter sets found on the
train set. In addition, because covid-19 hospitalization is a non-stationary process, models were
re-trained everyday using all previous days. To ease computation burden, only one day over two
was used to find hyperparameters on the training set.

4.2.4 Hyperparameter optimisation using random search

RC relies mainly on 4 hyperparameters including the leaking rate (i.e “memory” parameter), spectral
radius (i.e “chaoticity” parameter), input scaling (i.e “feature gain” parameter) and ridge (i.e penaliza-
tion parameter). Input scaling can be either, common to all features or specific to each feature which
increases the number of hyperparameter by the number of features.

Following the notation from glmnet package (Friedman, Hastie, and Tibshirani 2010), elastic-net
penalized linear regression relies on two hyperparameters, lambda (i.e the penalization parameter)
and alpha (i.e the compromise between lasso and ridge penalty)
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Hyperparameter were selected in the training set (i.e before March 1, 2021) using a wrapper approach
and a random search sampler using 2000 samples for each model. The sampling distribution were
defined as follow:

• (RC) ridge and (Enet) lambda: log-uniform law defined between 1e-10 and 1e5
• (RC) input scaling and spectral radius: log-uniform law defined between 1e-5 and 1e5
• (RC) leaking rate: log-uniform law defined between 1e-3 and 1
• (Enet) alpha: uniform defined between 0 and 1

We provided large search space for all hyper-parameters. Search space was slightly reduced for
leaking rate based on previous results and because a leaking rate of 1e-3 already imply that new
inputs make the reservoir change really slowly which is not inline with the dynamic of covid-19 but
would be appropriate for an application where the phenomena to forecast has a slow dynamic.

Finally, we provided an additional Enet model similar to the one in Ferté et al. (2022) where alpha
was set to 0.5 and lambda was re-evaluated everyday in the test set based on previous data using the
cross-validation procedure provided by glmnet.

4.3 Results

The goal of this task is to predict 14 days ahead the hospitalization. Figure 13 shows both the training
set (i.e before 2021-03-01) and the test set where the blue curve correspond to the input features (first
derivatives are not shown) and the orange curves correspond to the outcome the model is trained
on (i.e the hospitalization variation) and the hospitalizations at 14 days on which the performance
metrics are computed. The figures outline that the relation between the input features and the
outcome evolve over time and that the time series is not stationary. For instance IPTCC (Index
PREDICT de Transmissivité Climatique de la COVID-19) seems correlated to the outcome except that
it completely miss the summer 2021 increase.

4.3.1 Hyperparameter selection

Figure 14 shows the hyperparameter optimisation using random search for the different RC architec-
tures. We observe that model with multiple input scaling achieved better performance on the train
set compared to model with single input scaling which is expected as they can adapt more closely to
the data thanks to specific input scaling for each feature.

As expected, we observe that the optimal leaking rate is above 1e-2 for all RC which is coherent with
the short term dynamic of covid-19 epidemic. Trends for other hyperparameters are less clear even
though best hyperparameters sets were close for RC with common input scaling and for RC with
multiple input scaling.

Figure 15 shows the hyperparameter search for RC with multiple input scaling and connected input
layer. We observe that the random search tends to favor high importance given to derivative of
positive RT-PCR (including the elderly) and the derivative of IPTCC. The remaining features do not
exhibit a clear pattern.

4.3.2 Forecast performance
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current hospitalisations. Other features are scaled (divide by the maximum of the feature) represented
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Figure 15: Hyperparameter evaluation on training set by random search of the model with multiple
input scaling and no connection between input layer and output layer. Hp sets with MAE above 30
were removed for clarity of visualisation.
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Table 1: Model performance with several reservoir configuration. For each setting, 40 reservoirs
are computed and the forecast is the median of the 40 forecasts. Results show the performance
metrics: MAE = Mean Absolute Error, MRE = Median Relative Error, MAEB = Mean Absolute Error
to Baseline, MREB = Median Relative Error to Baseline.

Table 1: Model Performance
Model MAE MRE MAEB MREB

Common IS: R %»% O 15.23 0.26 -3.50 0.85
Common IS: I + R %»% O 14.84 0.26 -3.89 0.83
Multiple IS: R %»% O 15.38 0.28 -3.35 0.82
Multiple IS: I + R %»% O 15.25 0.28 -3.49 0.83
Elastic-net 16.40 0.29 -2.34 0.93

Table 1 shows the performance on the test set. Best model according to all metrics was RC with
common input scaling and connection between input and output layers. Having one input scaling per
feature did not improve the model which might be due to low generalisability of the hyperparameter
of the training set to the test set due to non-stationarity. Additionaly, connecting input layer to
output layer improved the model forecast. All RC models performed better than the elastic-net
model.

Figure 16 shows the forecast of the different models. We note that models struggle to accurately
forecast slope shifts. For instance, summer 2021 initial increase is partially predicted by all models
but its decrease is not well predicted. Winter 2021 increase is anticipated by all models but they tend
to overestimate it because of the rise of vaccine effect.

4.3.3 Number of model to aggregate

Figure 17 show the individual forecast for the 40 best sets of hyperparameters of each RC architecture.
Due to the internal random connection of the reservoir, we observe forecast stochasticity and relying
on only one forecast is unreliable. We explored the number of model needed at Figure 18 which
shows that after 10 models, forecast is stable and even 5 models for the simpler model with common
input scaling which rely on less hyperparamters.

4.3.4 Input feature importance

We compared the coefficients of the output layer estimated for the input layer and the reservoir
nodes. Additionally, we compared the coefficient given to the input layer by the output layer in the
reservoir and the coefficient estimated by the elastic-net model.

Figure 19 illustrates the ranking of input layer compared to all connections to the output layer,
including the 500 reservoir nodes and the 16 features of the input layer (excluding bias). The figure
shows that the model with common input scaling tends to assign less weight to input layer compared
to the model with multiple input scaling. This suggests that the reservoir with common input scaling
provides more information than the reservoir with multiple input scaling, which aligns with its better
performance, as shown in Table Table 1.

Furthermore, Figure 20 compares the coefficients assigned to input features by the elastic-net model
and the RC models. While the coefficients are generally consistent across RC models, there are
some notable differences with elastic-net. Specifically, certain features deemed important by the
elastic-net model, such as the derivative of RT-PCR, and the derivative of Vaccine, are less important
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for the reservoir computing model. This may indicate that these features predictive ability is better
conveyed by their relationship with other features, which is captured by the reservoir computing
model but might not be by the elastic-net model. Conversely, emergency, IPTCC, proportion of
positive RT-PCR, and hospitalizations are more important for the reservoir computing model than
for the elastic-net model.

4.4 Discussion

In this specific application, we have demonstrated that RC exhibits commendable performance in
comparison to Elastic-net, which serves as the reference model. Furthermore, we highlight the
inherent challenges in forecasting within this context, primarily stemming from the non-stationarity
of the time series.

All computations in this study were conducted using the reservoirnet package, and the entire
codebase is accessible on Zenodo (Ferté, Ba, et al. 2024). This R package demonstrates its efficacy in
implementing various reservoir architectures, including connection between the input layer and the
output layer, as well as the utilization of several input scaling, all within the context of a real-world
use case.

Given the substantial number of hyperparameters involved, we acknowledge that random search
may not be the most efficient optimization algorithm. We have retained this approach for the sake
of simplicity in this tutorial paper; however, meta-heuristic approaches, particularly those utilizing
evolutionary algorithms, may prove more efficient, especially when employing multiple input scaling
(Bala et al. 2018; Ferté, Dutartre, Hejblum, Griffier, Jouhet, Thiébaut, Hinaut, et al. 2024).

This study represents a novel contribution to epidemic forecasting utilizing RC. Notably, previous
literature predominantly focused on simpler problems characterized by fewer input features or
shorter evaluation periods (Liu et al. 2023; Ray, Chakraborty, and Ghosh 2021; Ghosh et al. 2021).
Our findings underscore the potential of this approach for future epidemics, suggesting its potential
to surpass more traditional epidemiological tools while maintaining a lightweight model structure
compared to other RNNs.

It is worth noting that all models, including those presented in Ferté et al. (2022), face challenges
in accurately predicting slope shifts, highlighting the need for further investigation. Specifically,
additional work is required to extend the application of Reservoir Computing (RC) to high-dimensional
settings, building upon insights gained from models that use a more extensive feature set. While RC
has demonstrated promising performance for epidemic forecasting in high-dimensional settings, this
task remains challenging (Ferté, Dutartre, Hejblum, Griffier, Jouhet, Thiébaut, Legrand, et al. 2024).

5 Discussion and conclusion

In this paper, we introduce the R package reservoirnet, which serves as a versatile tool for imple-
menting reservoir computing based on ReservoirPy’s Python library. It offers flexibility in defining
the reservoir architecture, including options for specifying connections between the input layer and
the output layer, as well as variations in input scaling as demonstrated on a real-world use case.

We provided a comprehensive overview of the basic usage of the reservoirnet package through
illustrative examples in regression and classification tasks. This introductory section serves as
a foundation for R users, offering step-by-step guidance on constructing and training reservoir
computing models using the package. By demonstrating the application of RC in both regression
and classification scenarios, we aim to equip users with the essential knowledge and skills needed to
harness the capabilities of reservoir computing for diverse tasks.
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Drawing on the robust foundation of the ReservoirPy structure, a well-maintained Python library,
this package inherits its reliability and longevity. We have focused on providing access to the
fundamental features, building upon the strong base provided by ReservoirPy. Therefore, this initial
version of reservoirnet must evolve in tandem with the growing understanding and adoption of
RC within the R community.
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