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Abstract

Model-based clustering provides a principled way of developing clustering methods. We
develop a new model-based clustering methods for count data. The method combines clustering
and variable selection for improved clustering. The method is based on conditionally independent
Poisson mixture models and Poisson generalized linear models. The method is demonstrated on
simulated data and data from an ultra running race, where the method yields excellent clustering
and variable selection performance.
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1 Introduction

Multivariate count data is ubiquitous in statistical applications, as ecology (Chiquet, Mariadassou,
and Robin 2021), genomics (Rau et al. 2015; Silva et al. 2019). These data arise when each observation
consists of a vector of count values. Count data are often treated as continuous data and therefore
modeled by a Gaussian distribution, this assumption is particularly poor when the measured counts
are low. Instead, we use the reference distribution for count data which is the Poisson distribution
(Agresti 2013; Inouye et al. 2017).

When a data set is heterogeneous, clustering allows to extract homogeneous subsets from the whole
data set. Many clustering methods, such as 𝑘-means (Hartigan and Wong 1979), are geometric in
nature, whereas many modern clustering approaches are based on probabilistic models. In this work,
we use model-based clustering which has been developed for many types of data (Bouveyron et al.
2019; McLachlan and Peel 2000; Frühwirth-Schnatter, Celeux, and Robert 2018).

Modern data are often high-dimensional, that is the number of variables is often large. Among
these variables, some are useful for the task of interest, some are useless for the task of interest and
some others are useful but redundant. There is a need to select only the relevant variables, and
that, whatever is the task. Variable selection methods are widespread for supervised learning tasks,
in particular to avoid overfitting. However, variable selection methods are less well developed for
unsupervised learning tasks, such as clustering. Recently, several methods have been proposed for
selecting the relevant variables in model-based clustering; we refer to Fop and Murphy (2018) and
McParland and Murphy (2018) for recent detailed surveys.

The goal of the present work is to provide a clustering and variable selection method for multivariate
count data, which, to the best of our knowledge, has not yet been studied in depth. A methodology
based on a conditionally independent Poisson mixture is developed to achieve this goal. The method
yields a final clustering model which is a conditionally independent Poisson mixture model for a
subset of the variables.

2 Motivating Example

The International Association of Ultrarunners (IAU) 24 hour World Championships were held in
Katowice, Poland from September 8th to 9th, 2012. Two hundred and sixty athletes representing
twenty four countries entered the race, which was held on a course consisting of a 1.554 km looped
route. An update of the number of laps covered by each athlete was recorded approximately every
hour (White and Murphy 2016). Figure 1 plots the number of loops recorded each hour for the three
medalists.

We can see among these three runners different strategies, the second placed runner lapped at a
regular rate, the first placed runner had a fast start but slowed later, and the third placed runner also
started fast but slowed more than the first place runner.

Our first goal will be, to analyze the whole data set to identify the different running strategies and to
evaluate which strategies are the best ones. The second goal is to identify which variables allows to
distinguish between the clusters, in order to identify which hour is essential in the management of
this endurance race.

3 Independent Poisson Mixture

Let 𝑋𝑛 = (𝑋𝑛1, 𝑋𝑛2, … , 𝑋𝑛𝑀) be a random vector of counts for 𝑛 = 1, 2, … , 𝑁. The goal is to clusters
theses 𝑁 observations into 𝐺 clusters. Let 𝑍𝑛 = (𝑍𝑛1, 𝑍𝑛2, … , 𝑍𝑛𝐺) be the latent cluster indicator
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Figure 1: Number of loops per hour for the three medalists.

vector, where 𝑍𝑛𝑔 = 1 if observation 𝑛 belongs to cluster 𝑔 and 𝑍𝑛𝑔 = 0 otherwise. We assume that
ℙ{𝑍𝑛𝑔 = 1} = 𝜏𝑔 for 𝑔 = 1, 2, … , 𝐺. Let denote 𝜏 = (𝜏1, … , 𝜏𝐺). The conditionally independent Poisson
mixture model (Karlis 2018, sec. 9.4.2.1) assumes that the elements of 𝑋𝑛 are independent Poisson
distributed random variables, conditional on 𝑍𝑛. That is,

𝑍𝑛 ∼ Multinomial(1, 𝜏 )
𝑋𝑛𝑚|(𝑍𝑛𝑔 = 1) ∼ Poisson(𝜆𝑔𝑚), for 𝑚 = 1, 2, … ,𝑀.

Alternative modelling frameworks exist, either to introduce some dependence between variables
or to normalize the variables. We refer the interested reader to (Karlis 2018; Bouveyron et al. 2019,
chap. 6) for more details.

Denoting themodel parameters by 𝜃 = (𝜏 , 𝜆)where 𝜆 = (𝜆𝑔𝑚)1≤𝑔≤𝐺,1≤𝑚≤𝑀, and where𝑋 = (𝑥𝑛)1≤𝑛≤𝑁
denotes the observations, the observed likelihood is

𝐿(𝜃) =
𝑁
∑
𝑛=1

𝐺
∑
𝑔=1

𝜏𝑔
𝑀
∏
𝑚=1

𝜙(𝑥𝑛𝑚, 𝜆𝑔𝑚),

where 𝜙(𝑥, 𝜆) = exp(−𝜆)𝜆𝑥/𝑥!, the Poisson probability mass function.

Due to form of the mixture distribution, there are no closed form for the maximum likelihood
estimators, and an iterative EM algorithm needs to be used (Dempster, Laird, and Rubin 1977) to
maximize the likelihood. The EM algorithm starts from an initial value 𝜃(0) for the model parameter,
and alternates the two following steps until convergence of the likelihood.

At the 𝑞th iteration of the EM algorithm, the E-step consists of computing for all 1 ≤ 𝑛 ≤ 𝑁 and
1 ≤ 𝑔 ≤ 𝐺:

𝑡(𝑞)𝑛𝑔 =
𝜏 (𝑞)𝑔 ∏𝑀

𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆𝑔𝑚)

∑𝐺
ℎ=1 𝜏

(𝑞)
ℎ ∏𝑀

𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆ℎ𝑚)
.
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In the M-step, the model parameters are updated as follows:

𝜏 (𝑞+1)𝑔 =
∑𝑁

𝑛=1 𝑡
(𝑞)
𝑛𝑔

𝑁
and 𝜆(𝑞+1)𝑔𝑚 =

∑𝑁
𝑛=1 𝑡

(𝑞)
𝑛𝑔 𝑥𝑛𝑚

∑𝑁
𝑛=1 𝑡

(𝑞)
𝑛𝑔

.

The EM algorithm steps are iterated until convergence, where convergence is determined when
log 𝐿(𝜃(𝑞+1)) − log 𝐿(𝜃(𝑞)) < 𝜖.

The number of clusters 𝐺 is selected using the Bayesian information criterion (BIC) (Schwarz 1978),

𝐵𝐼𝐶 = 2 log 𝐿( ̂𝜃) − {(𝐺 − 1) + 𝐺𝑀} log(𝑁 ),

where ̂𝜃 is the maximum likelihood estimate of the model parameters; models with higher BIC are
prefered to models with lower BIC.

4 Variable selection

We develop a model-based clustering method with variable selection for multivariate count data. The
method follows the approach of Raftery and Dean (2006) and Maugis, Celeux, and Martin-Magniette
(2009) for continuous data and Dean and Raftery (2010) and Fop, Smart, and Murphy (2017) for
categorical data. It consists in a stepwise model comparison approach where variables are added and
removed from a set of clustering variables.

4.1 Model setup

The clustering and variable selection approach is based around partitioning 𝑋𝑛 = (𝑋𝐶
𝑛 , 𝑋 𝑃

𝑛 , 𝑋𝑂
𝑛 ) into

three parts:

• 𝑋𝐶
𝑛 : The current clustering variables,

• 𝑋 𝑃
𝑛 : The proposed variable to add to the clustering variables,

• 𝑋𝑂
𝑛 : The other variables.

For simplicity of notation, 𝐶will be used to denote the set of indices of the current clustering variables,
𝑃 the indices of the proposed variable and 𝑂 the indices of the other one. Then (𝐶, 𝑃, 𝑂) is a partition
of {1, … ,𝑀}.

The decision onwhether to add the proposed variable to the clustering variables is based on comparing
two models:

𝑀1 (Clustering Model), which assumes that the proposed variable is useful for clustering:

(𝑋𝐶
𝑛 , 𝑋 𝑃

𝑛 ) ∼
𝐺
∑
𝑔=1

𝜏𝑔 ∏
𝑚∈{𝐶,𝑃}

Poisson(𝜆𝑔𝑚).

The 𝑀1 model is fitted for different values of 𝐺 between 1 and 𝐺𝑚𝑎𝑥 to achieve the best clustering
model.

𝑀2 (Non-Clustering Model) which assumes that the proposed variable is not useful for clustering,
but is potentially linked to the clustering variables through a Poisson GLM, that is,

𝑋𝐶
𝑛 ∼

𝐺
∑
𝑔=1

𝜏𝑔 ∏
𝑚∈𝐶

Poisson(𝜆𝑔𝑚)

𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 , 𝑍𝑛𝑔 = 1) ∼ PoissonGLM(𝑥𝐶𝑛 ),
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where Poisson GLM states that

log𝔼[𝑋 𝑃
𝑛 |𝑋𝐶

𝑛 = 𝑥𝐶𝑛 , 𝑍𝑛𝑔 = 1] = 𝛼 + 𝛽⊤𝑥𝐶𝑛 .

In order to avoid non significant terms in the Poisson GLM model, a standard stepwise variable
selection approach (using BIC as the variable selection criterion) is considered. Thus, the proposed
variable 𝑋 𝑃

𝑛 will be dependent on only a subset 𝑋𝑅
𝑛 of the clustering variables 𝑋𝐶

𝑛 . We note that 𝐺 is
fixed in the non-clustering model, because an optimal value for 𝐺 is previously chosen. The other
variables 𝑋𝑂

𝑛 are assumed to be conditionally independent of 𝑍𝑛 given 𝑋𝐶
𝑛 and 𝑋 𝑃

𝑛 .

The clustering and non-clustering models are represented as graphical models in Figure 2.

Z

XC XP

XO

Clustering

Z

XC XP

XO

XR ⊆ XC

Non Clustering

Figure 2: Graphical model representations of the clustering and non-clustering models.

Thus, there is two reasons forwhich𝑀2 can be preferred to𝑀1: either𝑋 𝑃
𝑛 does not contain information

about the latent clustering variable at all (ie. 𝑋𝑅
𝑛 = ∅), or 𝑋 𝑃

𝑛 does not add further useful information
about the clustering given the information already contained in the current clustering variables.
In the first situation, we say that 𝑋 𝑃

𝑛 is an irrelevant variable, because it contains no clustering
information. In the second situation, we say that 𝑋 𝑃

𝑛 is a redundant variable because it contains no
extra information about the clustering beyond the current clustering variables (𝑋𝐶

𝑛 ).

Additionally, both models assume the same form for the conditional distribution for 𝑋𝑂
𝑛 |(𝑋𝐶

𝑛 , 𝑋 𝑃
𝑛 )

and whose form doesn’t need to be explicitly specified because it doesn’t affect the model choice.

Variable 𝑃 is added to 𝐶 if the clustering model (𝑀1) is preferred to the non-clustering model (𝑀2). In
order to compare 𝑀1 and 𝑀2, following (Dean and Raftery 2010), we consider the Bayes Factor:

𝐵1,2 =
𝑝(𝑋 |𝑀1)
𝑝(𝑋 |𝑀2)

which is asymptotically approximated (Fop, Smart, and Murphy 2017; Kass and Raftery 1995) using
the difference of the BIC criteria for both models:

2 log𝐵1,2 ≃ 𝐵𝐼𝐶𝑀1 − 𝐵𝐼𝐶𝑀2 .

The same modelling framework can be used for removing variables from the current set of clustering
variables.

4.2 Interpretation

Comparing 𝑀1 and 𝑀2 is equivalent to comparing the following 𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 ) structures.
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The 𝑀1 (Clustering Model) assumes that,

𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 ) ∼
𝐺
∑
𝑔=1

ℙ{𝑍𝑛𝑔 = 1|𝑋𝐶
𝑛 = 𝑥𝐶𝑛 }Poisson(𝜆𝑔𝑚),

where

ℙ{𝑍𝑛𝑔 = 1|𝑋𝐶
𝑛 = 𝑥𝐶𝑛 } =

𝜏𝑔∏
𝑀
𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆𝑔𝑚)

∑𝐺
ℎ=1 𝜏ℎ∏

𝑀
𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆ℎ𝑚)

.

Whereas, the 𝑀2 (Non-Clustering Model) assumes that,

𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 ) = PoissonGLM(𝑥𝐶𝑛 ).

The method contrasts which of conditional model structures is better describing the distribution of
the proposed variable 𝑋 𝑃. The clustering model (𝑀1) uses a mixture model, with covariate dependent
weights, for the conditional model whereas the non-clustering model (𝑀2) is a Poisson generalized
linear model. The model selection criterion chooses the model that best models this conditional
distribution.

4.3 Stepwise selection algorithm

4.3.1 Screening variables: Initialization

We start with an initial choice of 𝐶 by first screening each individual variable by fitting a mixture of
univariate Poisson distributions (eg. Everitt and Hand 1981, chap. 4.3),

𝑋𝑛𝑚 ∼
𝐺
∑
𝑔=1

𝜏𝑔Poisson(𝜆𝑔𝑚), for 𝐺 = 1, 2, … , 𝐺𝑚𝑎𝑥.

The initial set of variables is set to be those variables where any model with 𝐺 > 1 is preferred to the
𝐺 = 1 model.

4.3.2 Stepwise algorithm: Updating

We consider a stepwise algorithm which alternates between adding and removing steps. In the
removal step, all the variables in 𝑋𝐶 are examined in turn to be removed from the set. In the adding
step, all the variables in 𝑋𝑂 are examined in turn to be added to the clustering set.

The algorithm also performs the selection of the number 𝐺 of clusters finding at each stage the
optimal combination of clustering variables and number of clusters. The procedure stops when no
change has been made to the set 𝑋𝐶 after consecutive exclusion and inclusion steps.

With the present stepwise selection algorithm, it can occur that during the process, we get back on a
solution (a set of clustering variable) already explored. Since our algorithm is not stochastic, we fall
into an infinite cycle. In this situation the algorithm is stopped, and the best solution according to
BIC among the solution of the cycle is kept.

The following pseudo-code summarizes our stepwise algorithm:

ALGORITHM Stepwise
BEGIN
initialize 𝑋𝐶

WHILE 𝑋𝐶 changes:
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- for all variable 𝑋𝑗 which are not in 𝑋𝐶

- estimate 𝑀1 on 𝑋𝐶 ∪ 𝑋𝑗 and select the best 𝐺
- estimate 𝑀2 with the model for 𝑋𝐶 (with G selected at the previous step) and a Poisson regression
for 𝑋𝑗 given 𝑋𝐶

- add 𝑋𝑗 in 𝑋𝐶 if 𝐵𝐼𝐶𝑀1 > 𝐵𝐼𝐶𝑀2

- for each 𝑋𝑗 in 𝑋𝐶

- estimate 𝑀2 on 𝑋𝐶 ∖ 𝑋𝑗, select the best 𝐺 and use a Poisson regression for 𝑋𝑗 given 𝑋𝐶 ∖ 𝑋𝑗
- estimate 𝑀1 on 𝑋𝐶 (with G selected at the previous step)
- remove 𝑋𝑗 from 𝑋𝐶 if 𝐵𝐼𝐶𝑀2 > 𝐵𝐼𝐶𝑀1
- test for infinite loop
ENDWHILE
return 𝑋𝐶 and 𝑀1 estimate
END

5 Simulation study

In this section, we evaluate the proposed variable selection method through three different simulation
scenarios. We start with an illustrative example in which, using a data set simulated according to the
proposed model, we show how to perform the variable selection.

Then, simulation studies are performed to evaluate the behavior of the proposed selection method,
when the data are simulated according to the proposed model (Scenario1) and when the model
assumptions are violated. In Scenario2, the link between 𝑋𝑅 and 𝑋𝐶 is no longer a Poisson GLM but a
more complex model. In Scenario3, the clustering variables are no longer conditionally independent.

5.1 Illustrative example

In the first simulation setting we consider 10 Poisson random variables. Variables 𝑋1, 𝑋2, 𝑋3 and
𝑋4 are the clustering variables, distributed according to a mixture of 𝐺 = 3 independent Poisson
mixture distributions with mixing proportions 0.4, 0.3, 0.3. Variables 𝑋5, 𝑋6 and 𝑋7 are redundant
variables, each one generated dependent on the clustering variables. These three variables are linked
to the four first ones through a Poisson GLM. The last three variables, 𝑋8, 𝑋9 and 𝑋10 are irrelevant
variables not related to the previous ones. Table 1 shows the parameter of the Poisson distribution
for each variable and each cluster.

Table 1: True values of component parameters (Scenario 1)

𝜆𝑔1 𝜆𝑔2 𝜆𝑔3 𝜆𝑔4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 𝜆𝑔8 𝜆𝑔9 𝜆𝑔10
𝑔 =
1

1 1 1 1 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 4 2 1

𝑔 =
2

2 2 1 4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 4 2 1

𝑔 =
3

4 4 4 4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 4 2 1

with 𝜆𝑔5 = exp(0.2𝑋2), 𝜆𝑔6 = exp(0.2𝑋1 − 0.1𝑋2) and 𝜆𝑔7 = exp(0.1(𝑋1 + 𝑋3 + 𝑋4)).

Below is the result obtained for one data set of size 𝑁 = 400. The evaluation criteria is the selected
features (true one are 𝑋1 to 𝑋4) and the Adjusted Rand Index (Rand 1971; Hubert and Arable 1985)
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obtained with the selected variables in comparison to those obtained with the full set of variables
and with the true clustering variables.

The independent Poisson mixture model was fitted to the simulated data with 𝑁 = 400 rows and 𝑃 =
10 columns. Models with 𝐺 = 1 to 𝐺 = 10 were fitted using the EM algorithm.

The values of BIC for the independent Poisson mixture model are plotted in Figure 3.

−14800

−14600

−14400

2.5 5.0 7.5 10.0
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B
IC

Figure 3: Bayesian Information Criterion (BIC) for the independent Poisson mixture model.

The model with the highest BIC has 𝐺 = 3 components and the resulting estimates of 𝜏 and 𝜆 are
given as:

Table 2: Estimates of the mixing proportions and component parameters.

𝜏𝑔 𝜆𝑔1 𝜆𝑔2 𝜆𝑔3 𝜆𝑔4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 𝜆𝑔8 𝜆𝑔9 𝜆𝑔10
𝑔 =
1

0.29 4.09 4.00 4.15 4.34 2.51 1.87 3.95 4.04 1.85 1.12

𝑔 =
2

0.42 2.04 2.11 1.34 3.74 1.64 1.27 2.00 3.91 2.06 0.96

𝑔 =
3

0.29 0.93 0.88 1.08 0.96 1.13 1.01 1.16 3.82 2.02 1.00

A look at Table 1 of true values allows us to say that these estimates are correct (except for label
switching).

Let start by initializing the stepwise algorithm.

fit_screen <- poissonmix_screen(x, G = 1:Gmax)
jchosen <- fit_screen$jchosen

The variables selected by the screening procedure are {1, 2, 3, 4, 6, 7}.
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Now, we execute the stepwise selection algorithm:

fit <- poissonmix_varsel(x, jchosen=jchosen, G = 1:Gmax)

[1] "Initial Selected Variables: 1,2,3,4,6,7"
[1] "Iteration: 1"
[1] "Add Variable: NONE 10 BIC Difference: -13.2"
[1] "Remove Variable: 6 BIC Difference: 83.7"
[1] "Current Selected Variables: 1,2,3,4,7"
[1] "Iteration: 2"
[1] "Add Variable: NONE 9 BIC Difference: -10.6"
[1] "Remove Variable: 7 BIC Difference: 50.1"
[1] "Current Selected Variables: 1,2,3,4"
[1] "Iteration: 3"
[1] "Add Variable: NONE 10 BIC Difference: -10.5"
[1] "Remove Variable: NONE 3 BIC Difference: -26.8"
[1] "Current Selected Variables: 1,2,3,4"

Note that the computing time is about 5 minutes on a laptop with 2.3 GHz Intel Core i7 processor
and 32Go of RAM.

The final chosen variables are {1, 2, 3, 4}.

Finally, the ARI obtained with the selected variables, which turn out to be the true clustering variable,
is 0.594 whereas it is 0.432 with all the variables.

5.2 Scenarios of simulation

In this section the three scenario of simulation are described. The first scenario is similar to the
previous illustrative example.

The second scenario is similar to the first one, except for variables 𝑋5, 𝑋6 and 𝑋7 which are still
redundant but linked to the true clustering variables through linear, quadratic and exponential
term in an identity link function, respectively, and not a Poisson GLM with logarithm link function.
More precisely, 𝑋5, 𝑋6 and 𝑋7 have Poisson distribution of respective parameter 𝜆𝑔5 = exp(2𝑋2),
𝜆𝑔6 = exp(𝑋 2

1 + 𝑋3) and 𝜆𝑔7 = exp(exp(0.1(𝑋1 + 𝑋3 + 𝑋4))). Thus, the data are simulated from a
model which does not satisfy assumptions of model 𝑀2.

The third scenario is similar to the second one, but some dependence between the clustering variables
𝑋1 and 𝑋2 is introduced, in order to create some redundancy among the true clustering variables.
For this, 𝑋1 and 𝑋2 are simulated as in the previous setting, and a same term is added to both of
these variables (simulated according a Poisson distribution of parameter 2) .

5.3 Results

Table 3 shows the number of times, among the 100 simulated data sets, that each variable is selected.
For Scenario 1, the model selection procedure perform perfectly, selecting each time only the true
clustering variables. For Scenario 2, due to the fact the link between the redundant and the true
clustering variables is not a standard Poisson GLM, the variable selection is perturbed and variables
𝑋5 is sometimes selected. For Scenario 3, the results is that the dependency between 𝑋1 and 𝑋2
perturb the variable selection, and only one of them is selected (and even sometimes none of them).
Redundant variables 𝑋5 and 𝑋6, which are linked to the clustering variables but with a linear link,
are also sometimes selected.
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Table 3: Number of selection for each variable, simulation setting number 3.

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

Scenario
1

100 100 100 100 0 0 0 0 0 0

Scenario
2

97 100 90 98 44 0 0 0 0 0

Scenario
3

48 35 89 88 65 34 3 0 0 0

Figure 4 plots the distribution of the ARI differences between the model with either the selected
variables or all the variables, and the one with the true clustering variables. These plots shows that
for all scenarios, the ARI of the model with the selected variables (left boxplot of each plot) are always
closest to the optimal ARI (obtained with the true clustering variables).
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Figure 4: Distribution of the ARI differences with the model with the true clustering variables, for
the model with the selected variables and the model with all variables.

Finally Figure 5 plots the histogram of the difference of ARI with the selected variables and with
all the variables. This plot illustrates the interest of variable selection on the clustering results, and
indeed, for all the scenarios, the ARI is better with the selected variables than when using all the
variables.

6 International Ultrarunning Association Data

We apply the proposed procedure to the data from the 2012 International Ultrarunning Association
World 24H Championships.

We start by initializing the stepwise algorithm, and find the variables selected by the screening
procedure:

10



0

10

20

30

40

50

0.0 0.2 0.4
ARI differences

F
re

qu
en

cy

Scenario 1

0

5

10

15

20

25

0.0 0.2 0.4
ARI differences

F
re

qu
en

cy

Scenario 2

0

10

20

30

0.0 0.2 0.4
ARI differences

F
re

qu
en

cy

Scenario 3

Figure 5: Distribution of the ARI differences for the model with the selected variables and the model
with all variables.

fit_screen <- poissonmix_screen(x, G = 1:Gmax)
jchosen <- fit_screen$jchosen
jchosen

[1] 3 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24

We then execute the proposed stepwise selection algorithm (the computing time is about 26 minutes
on a laptop with 2.3 GHz Intel Core i7 processor and 32Go of RAM):

fit <- poissonmix_varsel(x, jchosen = jchosen, G = 1:Gmax)

The final chosen variables found by the algorithm are:

[1] 9 10 11 12 14 15 16 17 18 19 20 21 22 24

The optimal number of clusters 6 has been chosen inside the stepwise selection algorithm. The same
choice is obtained when looking for the best 𝐺 with the conditionally independent Poisson mixture
on the selected variables (Figure 6).

In order to illustrate the results, we plot the cluster means according to the 24 variable mean
parameters per cluster. For each variable not in the chosen variable set, a Poisson regression model
is fitted with the chosen variables as predictors. Forward and backwards variable selection is
conducted on this regression, if the regression model has any predictor variables, then the variable
is called “redundant” and if the regression model has no predictor variables, then the variable is
called “irrelevant”. Figure 7 shows the cluster mean for each variable, where the label indicates if the
variable is irrelevant for clustering (“I”), redundant (“R”) or useful (then the point is unlabelled).

The variables discriminate the clusters pacing strategies of the runners are the number of laps covered
during the last two thirds of the race (except during the 13th and 23rd hours). The number of laps
covered during the first eight hours does not provide any additional clustering information, and even
no information at all for the number of laps covered during the first hour.
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Figure 8 plots the density map per clusters. Area of high density (red) indicates the hours and the
corresponding average number of laps specific of each cluster.
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Figure 8: Density maps per cluster

Cluster 5 are clearly the most efficient runners. Looking at the running strategy in Figure 7 and
Figure 8, we can see that they start as runners of Cluster 1 and Cluster 2, but they managed to keep a
constant pace on the second part of the race, unlike those of the other two clusters which faltered.
Runners of Cluster 3 has covered the fewest number of laps. Indeed, looking at their running strategy,
we can see that most of these runners stop after the first third of the race. Cluster 6 is relatively
similar to Cluster 3, but runners manage to continue running until half of the race is completed.
Finally, Cluster 4 obtains slightly better results than Cluster 6, starting more carefully, and managing
to run until the end of the race, even if the pace of the last hours is not very constant.

Finally, Figure 9 shows boxplots of the total number of loops covered by the runners of each of the
clusters.

7 Discussion

A method for clustering and variable selection for multivariate count data has been proposed. The
method is shown to give excellent performance on both simulated and real data examples. The
method selects set of relevant variables for clustering and other variables are not selected if they are
irrelevant or redundate for clustering purposes.

The proposed method is shown to give interesting insights in the application domain, where some
clusters members are shown to perform better overall to others and the benefits of constant (or near
constant pacing) are shown.

The level of variable selection is determined by the relative performance of the two models (as shown
in Section 4.2) is compared. Alternative models to the Poisson GLM model which have greater
flexibility could lead to a smaller set of selected variables than the proposed method achieves. This is
a topic for future research.
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The proposed method is based on a conditionally independent Poisson mixture model for the
selected variables. It could be argued that the conditional independence assumption is unrealistic in
the application. Hand and Yu (2001) consider the implication of incorrectly assuming conditional
independence in a classification setting and show that it can make the group membership probabilities
over confident. Furthermore, in the conditional independent Poisson mixture model, the number of
clusters can be upwardly biased, where extra clusters are included to model dependence in the data.
The approach taken in the paper could be extended to use other multivariate count distributions,
including multivariate distributions without the conditional independence assumption (eg. Karlis
2018; Karlis and Meligkotsidou 2007; Inouye et al. 2017).

The code for the proposed approach is available as an R package poissonmix_0.1.tar.gz.
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