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Abstract

This study investigates the use of Variational Auto-Encoders to build a simulator that ap-
proximates the law of genuine observations. Using both simulated and real data in scenarios
involving counterfactuality, we discuss the general task of evaluating a simulator’s quality, with
a focus on comparisons of statistical properties and predictive performance. While the simulator
built from simulated data shows minor discrepancies, the results with real data reveal more
substantial challenges. Beyond the technical analysis, we reflect on the broader implications of
simulator design, and consider its role in modeling reality.
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Asher Rubin walks out of the starosta’s home and heads toward the market square. With
evening, the sky has cleared, and now a million stars are shining, but their light is cold
and brings down a frost upon the earth, upon Rohatyn. The first of this autumn. Rubin
pulls his black wool coat tighter around him; tall and thin, he looks like a vertical line.
(Tokarczuk 2021, I(3))

1 Introduction

1.1 Fiction as the original simulation

One of humanity’s oldest creative endeavors, fiction represents an early form of simulation. It extends
the imaginative play where children create scenarios, roles, or worlds that are not constrained by
the rules of reality, that is “childhood pretence” (Carruthers 2002) or “the make-believe games” of
children (Walton 1993). Through stories, myths, and imagined worlds, humans construct alternative
realities to explore ideas, express emotions, and reflect on their existence. By presenting hypothetical
scenarios and posing “what if things had been different” questions (Pearl and Mackenzie 2018, 34),
fiction empowers individuals to explore alternative histories, draw insights from the experiences of
others, and engage with possibilities that extend beyond the confines of the physical world. At its core,
fiction abstracts and reconstructs elements of reality. An author selectively includes, exaggerates, or
omits aspects of the real world, creating models that serve their artistic or thematic intentions. From
Homer’s Odyssey (Homère 2000) to speculative tales like Mary Shelley’s Frankenstein (Shelley 1818),
fiction mirrors the complexities of human life, enabling readers to engaged with an imagined reality
that resonates with their own.
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The relationship between fiction and reality has long been a subject of debate. Plato, in his critique
of art, viewed fiction as a mere imitation of the physical world, itself a flawed reflection of the ideal
“Forms”. By this reasoning, fiction is a “simulation of a simulation”, twice removed from truth (Platon
2002, Livre X). Aristotle, by contrast, argued that fiction, through “mimesis”, the imitation of action
and life, can illuminate universal truths (Aristote 2006, Chapitres 1 à 5). By abstracting from the
particular, fiction allows exploration of broader patterns and principles.

Following Aristotle’s perspective, this tradition of creating and interacting with imagined realities
provides a natural foundation for distinguishing scientific theories from scientificmodels (Barberousse
and Ludwig 2000) and understanding modern simulations. While they stem from the same drive to
represent and explore, scientific theories, scientific models and modern simulations introduce a higher
degree of mathematical rigor. Nevertheless, fiction remains their conceptual ancestor, reminding us
that the human impulse to model and engage with alternate realities is as old as storytelling itself.

1.2 From modern simulations to computer simulations

The concept of modern simulations predates the modern era. Early instances include mechanical
devices like the Antikythera, a sophisticated analog computer from the 2nd century BCE designed to
simulate celestial movements (and the MacGuffin chased by Indiana Jones in the 2024 installment of
the franchise, Solly 2023). The emergence of mathematical models in the works of Galileo and Newton
introduced a new form of simulation, where equations were used to predict physical phenomena with
increasing precision. By the 18th century, probabilistic experiments like Buffon’s Needle, designed to
approximate the number 𝜋 (Aigner and Ziegler 2018, sec. 24), demonstrated the power of simulating
complex systems. However, the advent of computer simulations, as we understand them today, began
during World War II with the work of J. von Neumann and S. Ulam (Metropolis and Ulam 1949).

While studying neutron behavior, they faced a challenge that was too complex for theoretical
analysis and too hazardous, time-consuming, and costly to investigate experimentally. Fundamental
properties (e.g., possible events and their probabilities) and basic quantities (e.g., the average distance
a neutron would travel before colliding with an atomic nucleus, the likelihood of absorption or
reflection, and energy loss after collisions) were known, but predicting the outcomes of entire event
sequences was infeasible. To address this challenge, they devised a method of generating random
sequences step by step using a computer, naming it “Monte Carlo” after the casino, a suggestion
by N. Metropolis. Statistical analysis of the data produced by repeatedly applying this method
provided sufficiently accurate solutions to better understand nuclear chain reactions, a crucial aspect
of designing atomic bombs and later nuclear reactors. This breakthrough marked the birth of modern
computer simulations.

Today, computer simulations, henceforth referred to simply as simulations, play a fundamental role
in applied mathematics. Generally, conducting a simulation involves running a computer program (a
“simulator”) designed to represent a “system of interest” at a problem-dependent level of abstraction
(that is, with a specific degree of complexity) and collecting the numerical output for analysis.

Examples of systems of interest are virtually limitless and highly diverse. They can represent a
real-world process in a holistic fashion, such as the regular functioning of a person’s heart at rest, or
the medical trajectories of a cohort of patients undergoing chemotherapy. Alternatively, in a more
focused fashion, they can consist of a hybrid pipeline that combines an upstream real-world process
with downstream data processing of intermediary outputs, such as the estimation of peripheral
oxygen saturation in a healthy patient using a pulse oximeter. Regardless of the context, determining
the appropriate levels of abstraction and realism is always a significant challenge.

Here, we focus on simulations used to evaluate the performance of statistical procedures through
simulation studies, as discussed by Morris, White, and Crowther (2019) in their excellent tutorial
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on the design and conduct of such studies. The interested reader will find in their work a carefully
curated list of books on simulation methods in general and articles emphasizing rigor in specific
aspects of simulation studies. Specifically, we consider scenarios where a statistician, interested in
a real-world process, has developed an algorithm tailored to learning a particular feature of that
process from collected data and seeks to assess the algorithm’s performance through simulations.

Once the simulator is devised, the following process is repeated multiple times. In each iteration,
typically independently from previous iterations: first, the simulator generates a synthetic data set of
size 𝑛; second, the algorithm is run on the generated data; third, the algorithm’s output is collected for
further analysis. After completing these iterations, the next step is to compare the outcome from one
run to the algorithm’s target. This is made possible by the design of the simulator. Finally, the overall
performance of the algorithm is assessed by comparing all the results collectively to the algorithm’s
target. Depending on the task, this evaluation can involve assessing the algorithm’s ability to well
estimate its target, the validity of the confidence regions it constructs for its target, the algorithm’s
ability to detect whether its target lies within a specified null domain (using an alternative domain as
a reference), and more. This list is far from exhaustive. The entire process can be repeated multiple
times, for example, to assess how the algorithm’s performance depends on 𝑛.

However, in order to carry out these steps, the statistician must first devise a simulator. This simulator
should ideally generate synthetic data that resemble the real-world data in a meaningful way, a goal
that is often difficult to achieve. So, how can one design a realistic simulator, and what does “realistic
simulator” even mean in this context? These are the central questions we explore in this work.

1.3 A probabilistic stance

We adopt a probabilistic framework to model the data collected by observing a real-world process.
Specifically, the data are represented as a random variable 𝑂𝑛 (𝑂 as in observations) drawn from a
probability law 𝑃𝑛 (𝑃 as in probability). The law 𝑃𝑛 is assumed to belong to a statistical model ℳ𝑛

(ℳ as in model), which is the set of all probability laws on the space 𝒪𝑛 where 𝑂𝑛 takes its values.
This model incorporates constraints that reflect known properties of the real-world process and,
where necessary, minimal assumptions about it.

The superscript 𝑛 indicates an amount of information. For example, in the context of this study, 𝑛
typically represents the number of elementary observations drawn independently from a law 𝑃 on
𝒪 and gathered in 𝑂𝑛. In this case, 𝒪𝑛 corresponds to the Cartesian product 𝒪 × ⋯ × 𝒪 (repeated 𝑛
times) and 𝑃𝑛 to the product law 𝑃⊗𝑛, with 𝑂𝑛 decomposing as (𝑂1, … , 𝑂𝑛)

The feature of interest is an element of a spaceℱ (e.g., a subset of the real line, or a set of functions). It
is modeled as the value Ψ(𝑃𝑛) of a functional Ψ ∶ ℳ𝑛 → ℱ evaluated at 𝑃𝑛. The algorithm developed
to estimate this feature is modeled as a functional 𝒜 ∶ 𝒪𝑛 → ℱ. Training the algorithm involves
applying 𝒜 to the observed data 𝑂𝑛, resulting in the estimator 𝒜(𝑂𝑛) for the estimand Ψ(𝑃𝑛).

We emphasize that we address the questions closing Section 1.2 without focusing on the specific
nature of the functional of interest Ψ: how can one design a realistic simulator, and what does
“realistic simulator” even mean in this context?

1.4 Draw me a simulator

When constructing simulators, there is a spectrum of approaches, varying in complexity and flexibility.
At one end of the spectrum, simulators are built upon relatively simple parametric models. While
these models are sometimes more elaborate, they often rely on standard forms or recurring techniques,
which streamlines their implementation. This approach is further reinforced by the common practice
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of using models proposed by others. Doing so not only saves effort but also facilitates meaningful
comparisons between studies, as the same modeling framework is shared.

Regardless of the model’s simplicity, parametric simulators are inherently limited and unable to cap-
ture the complexity of real-world processes. The term “unnatural” aptly describes this shortcoming,
as these models are simplifications that abstract away many intricacies of reality. Even with sophisti-
cated parametrizations, it is fundamentally impossible for such simulators to convincingly replicate
the multifaceted interactions and variability inherent in “nature”. Thus, parametric simulators, by
their very essence, cannot achieve realism.

At the other end of the spectrum, one can also adopt a nonparametric approach through bootstrapping,
which involves resampling data directly from the observed dataset. This method bypasses the need to
specify a parametric model and instead leverages the structure of the real data to generate simulated
samples.

Bootstrapping usually refers to a self-starting process that is supposed to continue or grow without
external input. The term is sometimes attributed to the story where Baron Münchausen pulls himself
and his horse out of a swamp by his pigtail, not by his bootstraps (Raspe 1866, chap. 4). In France,
“bootstrap” is sometimes translated as “à la Cyrano”, in reference to the literary hero Cyrano de
Bergerac, who imagined reaching the moon by standing on a metal plate and repeatedly using a
magnet to propel himself (Rostand 2005, Act III, Scene 13).

When dealing with independent and identically distributed (i.i.d.) samples, bootstrapping generates
data that closely resemble the observed data. However, the origin of the term “bootstrapping” suggests
a measure of incompleteness hence dissatisfaction, which is fitting in the context of this article.
Indeed, a bootstrapped simulator can be viewed as both transparent and opaque, depending on the
perspective. Conditionally on the real data, the simulator’s behavior is transparent, as understanding
it reduces to understanding the sampling mechanism over the set of indices {1, … , 𝑛}. Unconditionally,
however, one is again confronted with the limitation of knowledge about 𝑃𝑛, beyond recognizing it
as an element of ℳ𝑛.

______________________________________
/ I am a simulator. Press ENTER to run \
\ the synthetic experiment. /
--------------------------------------
\
\

__
UooU\.'@@@@@@`.
\__/(@@@@@@@@@@)

(@@@@@@@@)
`YY~~~~YY'
|| ||

In Le Petit Prince (de Saint-Exupéry 1943), the Little Prince dismisses the pilot’s simple drawings of a
sheep as unsatisfactory. Instead, he prefers a drawing of a box, imagining the perfect sheep inside.

/******************************************************************
* I am a simulator. Press ENTER to run the synthetic experiment. *
******************************************************************/

Similarly, in simulations, straightforward simulators often fail to capture the complexity we seek,
while black-box simulators, though opaque, can sometimes offer greater efficiency. Unlike the Little
Prince, however, we are not content with the box alone – we want to look inside, to understand and
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refine the mechanisms driving our simulator.

1.5 Organization of the article

In this article, we explore an avenue to build more realistic simulators by using real data and neural
networks, more specifically, Variational Auto-Encoders (VAEs). To illustrate our approach, we
focus on a simple example rooted in causal analysis, as the causal framework presents particularly
interesting challenges.

Section 2 outlines our objectives and introduces a running example that serves as a unifying thread
throughout the study. Section 3 provides a concise overview of VAEs, including their formal definition
and the key ideas behind their training. Section 4 offers an explanation of how VAEs are constructed,
while Section 5 presents a comprehensive implementation tailored to the running example. Using
this VAE, Section 6 describes the construction of a simulator designed to approximate the law of
simulated data and discusses methods for evaluating the simulator’s performance. Section 7 extends
this approach to a real-world dataset. Finally, Section 8 concludes the article with a literature review,
a discussion of the challenges encountered, the limitations of the proposed approach, and some
closing reflections.

Note that the online version of this article is preferable to the PDF version, as it allows readers to directly
view the code. Throughout the article, we use a mix of Python (Van Rossum and Drake 2009) and R (R
Core Team 2020) for implementation, leveraging commonly used libraries in both ecosystems.

2 Objective

Suppose that we have observed 𝑂1, … , 𝑂𝑛, 𝑂𝑛+1, … , 𝑂𝑛+𝑛′ drawn independently from 𝑃, with 𝑃 known
to belong to amodel𝒫 consisting of laws on𝒪. For brevity, wewill use the notation𝑂1∶𝑛 = (𝑂1, … , 𝑂𝑛)
and 𝑂(𝑛+1)∶(𝑛+𝑛′) = (𝑂𝑛+1, … , 𝑂𝑛+𝑛′).

Suppose moreover that we are interested in a causal framework where each 𝑂𝑖 is viewed as a piece of
a complete data 𝑋𝑖 ∈ 𝒳 drawn from a law 𝑄 that lives in a model 𝒬, with 𝑋1, … , 𝑋𝑛, 𝑋𝑛+1, … , 𝑋𝑛+𝑛′
independent. The piece 𝑂𝑖 is expressed 𝜋(𝑋𝑖), with the function 𝜋 projecting a complete data
𝑋 ∼ 𝑄 ∈ 𝒬 onto a coarser real-world data 𝑂 = 𝜋(𝑋) ∼ 𝑃 ∈ 𝒫.

Our objective is twofold. First, we aim to build a generator that approximates 𝑃, that is, an element
of 𝒫 from which it is possible to sample independent data that exhibit statistical properties similar to
(or, colloquially, “behave like”) 𝑂1, … , 𝑂𝑛+𝑛′ . In other words, we require that the generator produces
data whose joint law approximates the law of the observed data, ensuring that the generated samples
reflect the same underlying structure and dependencies as the real-world observations. Second, we
require the generator to correspond to the law of 𝜋(𝑋) with 𝑋 drawn from an element of 𝒬.

We use a running example throughout the document.
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INFO Running example.

For example, 𝒫 can be the set of all laws on 𝒪 ∶= ({0, 1}2 × ℝ3) × {0, 1} × ℝ such that

𝑂 ∶= (𝑉 ,𝑊 , 𝐴, 𝑌 ) ∼ 𝑃 ∈ 𝒫

satisfies

𝑐 ≤ 𝑃(𝐴 = 1|𝑊 , 𝑉 ), 𝑃(𝐴 = 0|𝑊 , 𝑉 ) ≤ 1 − 𝑐

𝑃-almost surely for some 𝑃-specific constant 𝑐 ∈]0, 1/2], and 𝑌 is 𝑃-integrable.
Moreover, we view 𝑂 as 𝜋(𝑋) with

𝑋 ∶= (𝑉 ,𝑊 , 𝑌 [0], 𝑌 [1], 𝐴) ∈ 𝒳 ∶= ({0, 1}2 × ℝ3) × ℝ × ℝ × {0, 1},
𝜋 ∶ (𝑣 , 𝑤, 𝑦[0], 𝑦[1], 𝑎) ↦ (𝑣, 𝑤, 𝑎, 𝑎𝑦[1] + (1 − 𝑎)𝑦[0]),

and 𝒬 defined as the set of all laws on 𝒳 such that 𝑋 ∼ 𝑄 ∈ 𝒬 satisfies

𝑐′ ≤ 𝑄(𝐴 = 1|𝑊 , 𝑉 ), 𝑄(𝐴 = 0|𝑊 , 𝑉 ) ≤ 1 − 𝑐′

𝑄-almost surely for some 𝑄-specific constant 𝑐′ ∈]0, 1/2], and 𝑌 [0] and 𝑌 [1] are 𝑄-integrable.
We consider (𝑉 ,𝑊 ) as the context in which two possible actions 𝑎 = 0 and 𝑎 = 1would yield
the counterfactual rewards 𝑌 [0] and 𝑌 [1], respectively. One of these actions, 𝐴 ∈ {0, 1}, is
factually carried out, resulting in the factual reward 𝑌 = 𝐴𝑌[1] + (1 −𝐴)𝑌 [0], that is, 𝑌 [1] if
𝐴 = 1 and 𝑌 [0] otherwise. In the causal inference literature, this definition of 𝑌 is referred
to as the consistency assumption.
In the context of a randomized clinical trial, the pair (𝑉 ,𝑊 ) represents baseline covariates,
which are measured before one of two possible treatments is assigned. The binary variable𝐴
indicates the treatment randomly assigned to a participant. The outcome variable 𝑌measures
the effect of the treatment; it is viewed as the counterfactual outcome in a hypothetical
scenario where everyone would receive that same treatment.
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INFO Running example in action.

The Python function simulate defined in the next chunk of code operationalizes drawing
independent data from a law 𝑃 ∈ ℳ.
import numpy as np
import random
from numpy import hstack, zeros, ones

def simulate(n, dimV, dimW):
def expit(x):

return 1 / (1 + np.exp(-x))
p = np.hstack((1/3 * np.ones((n, 1)), 1/2 * np.ones((n, 1))))
V = np.random.binomial(n = 1, p = p)
W = np.random.normal(loc = 0, scale = 1, size = (n, dimW))
WV = np.hstack((W, V))
pAgivenWV = np.clip(expit(0.8 * WV[:, 0]), 1e-2, 1 - 1e-2)
A = np.random.binomial(n = 1, p = pAgivenWV)
meanYgivenAWV = 0.5 * expit(-5 * A * (WV[:, 0] - 1)\

+ 3 * (1 - A) * (WV[:, 1] + 0.5))\
+ 0.5 * expit(WV[:, 2])

Y = np.random.normal(loc = meanYgivenAWV, scale = 1/25, size = n)
dataset = np.vstack((np.transpose(WV), A, Y))
dataset = np.transpose(dataset)
return dataset

Note that justifying the specific choices made while defining the function simulate is unnecessary.
In the context of this study, we are free from the need for, or aspiration to, a realistic simulation
scheme. Under the law 𝑃 that simulate samples from, 𝑉 and 𝑊 are independent; 𝑉 consists of two
independent variables 𝑉1 and 𝑉2 that are drawn from the Bernoulli laws with parameters 1

3 and 1
2 ; 𝑊

is a standard Gaussian random variable. In addition, given (𝑊 , 𝑉 ), 𝐴 is sampled from the Bernoulli
law with parameter

max {0.01,min [0.99, expit(0.8 × 𝑊1)]}

and, given (𝐴,𝑊 , 𝑉 ), 𝑌 is sampled from the Gaussian law with mean

1
2 expit [−5𝐴 × (𝑊1 − 1) + 3(1 − 𝐴) × (12 + 𝑊2)] +

1
2 expit(𝑊3)

and (small) standard deviation 1
25 . As noted in the introduction, these choices rely on standard forms

and recurring techniques.
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INFO Running example, cted.

For future use, we sample in the next chunk of code 𝑛 + 𝑛′ = 104 independent observations
from 𝑃. Observations 𝑂1∶𝑛 (gathered in train) will be used for training and observations
𝑂(𝑛+1)∶(𝑛+𝑛′) (gathered in test) will be used for testing.
import random
random.seed(54321)
dimV, dimW = 2, 3
n_train = int(5e3)
train = simulate(n_train, dimV, dimW)
test = simulate(n_train, dimV, dimW)
print("The three first observations in 'train':\n",

" V_1 V_2 W_1 W_2 W_3 A Y\n",
np.around(train[:3, [3, 4, 0, 1, 2, 5, 6]], decimals = 3))

The three first observations in 'train':
V_1 V_2 W_1 W_2 W_3 A Y

[[ 0.000e+00 1.000e+00 -9.100e-02 1.132e+00 -9.010e-01 0.000e+00
5.980e-01]

[ 1.000e+00 1.000e+00 -2.080e-01 -2.920e-01 1.000e-03 0.000e+00
5.550e-01]

[ 0.000e+00 0.000e+00 -1.417e+00 4.220e-01 8.510e-01 0.000e+00
8.980e-01]]

## np.savetxt("data/train.csv", train, delimiter = ",")
## np.savetxt("data/test.csv", test, delimiter = ",")

3 VAE in a nutshell

3.1 Formal definition

In the context of this article, a Variational Auto-Encoder (VAE) (Kingma and Welling 2014), (D. J.
Rezende, Mohamed, and Wierstra 2014) is an algorithm that, once trained, outputs a generator. The
generator is the law of a random variable of the form

Gen
𝜃
(𝑍) (1)

where

1. the source of randomness 𝑍 in Equation 1 writes as

𝑍 ∶= (𝑍 (0), … , 𝑍 (𝑑)) (2)

with 𝑍 (0), … , 𝑍 (𝑑) independently drawn from

• the uniform law on {1, … , 𝑛} for 𝑍 (0)

• the standard normal distribution for 𝑍 (1), … , 𝑍 (𝑑);

2. the function Gen𝜃 in Equation 1 is an element of a large collection, parametrized by the
finite-dimensional set Θ, of functions mapping ℝ𝑑+1 to 𝒳.

For simplicity, we will also refer to the function Gen𝜃 as a generator. Moreover, we emphasize that
the entire parameter 𝜃 is to be fitted, meaning there are no hyperparameters involved.
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Because Gen𝜃(𝑍) belongs to 𝒳, we can evaluate 𝜋 ∘Gen𝜃(𝑍), hence the generator can also be used to
generate random variables in 𝒪. Figure 1 illustrates the architecture of the VAE used in this study. It
shows the key components of the model, including the encoder, the latent space, and the decoder,
along with the flow of information between them.

Figure 1: Architecture of the simulator. The figure depicts the flow of information through the
encoder, latent space, and decoder components. It emphasizes how the input source of randomness 𝑍
is transformed into a latent representation and then reconstructed as a complete data, 𝑋 = Gen𝜃(𝑍),
which can be mapped to a real-world data 𝑂 = 𝜋(𝑋).

The word “auto-encoder” reflects the nature of the parametric form of each Gen𝜃. We begin with
a formal presentation in four steps, which is then followed by a discussion of what each step
implements. Specifically, each Gen𝜃 writes as a composition of four mappings 𝐽𝑛, Enc𝜃1 , 𝐾 and Dec𝜃2
with 𝜃 ∶= (𝜃1, 𝜃2) ∈ Θ1 × Θ2 = Θ:

Gen
𝜃

= Dec
𝜃2

∘𝐾 ∘ Enc
𝜃1

∘𝐽𝑛.

Here,

1. 𝐽𝑛 ∶ {1, … , 𝑛} × ℝ𝑑 → 𝒪 × ℝ𝑑 is such that

𝐽𝑛(𝑍) = (𝑂𝑖, (𝑍 (1), … , 𝑍 (𝑑)))

with 𝑖 = 𝑍 (0);

2. Enc𝜃1 ∶ 𝒪 × ℝ𝑑 → ℝ𝑑 × (ℝ∗+)𝑑 × ℝ𝑑 is such that, if Enc𝜃1(𝑜, 𝑧) = (𝜇, 𝜎 , 𝑧′), then

• 𝑧 = 𝑧′, and
• Enc𝜃1(𝑜, 𝑧

″) = (𝜇, 𝜎 , 𝑧″) for all 𝑧″ ∈ ℝ𝑑;

3. 𝐾 ∶ ℝ𝑑 × (ℝ∗+)𝑑 × ℝ𝑑 → ℝ𝑑 is given by

𝐾(𝜇, 𝜎 , 𝑧) ∶= 𝜇 + 𝜎 ⊙ 𝑧,

where ⊙ denotes the componentwise product;

4. Dec𝜃2 maps ℝ𝑑 to 𝒳.

Conditionally on 𝑂1∶𝑛 and 𝑍, the computation of Gen𝜃(𝑍) is deterministic. The process unfolds in
four steps:

1. Sampling and transfer. Compute 𝐽𝑛(𝑍), which involves sampling one observation 𝑂𝑖 uni-
formly among all genuine observations and transfer (𝑍 (1), … , 𝑍 (𝑑)) unchanged.
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2. Encoding step. Compute Enc𝜃1 ∘𝐽𝑛(𝑍), which encodes 𝑂𝑖 as a vector 𝜇 ∈ ℝ𝑑 and a 𝑑 × 𝑑
covariance matrix diag(𝜎)2. This step does not modify (𝑍 (1), … , 𝑍 (𝑑)), which is transferred
unchanged.

3. Gaussian sampling. Compute 𝐾 ∘ Enc𝜃1 ∘𝐽𝑛(𝑍) by evaluating 𝜇 + 𝜎 ⊙ (𝑍 (1), … , 𝑍 (𝑑)) ∈ ℝ𝑑.
This amounts to sampling from the Gaussian law with mean 𝜇 and covariance matrix diag(𝜎)2.
In other words, 𝐾 enables the sampling of a neighbor of the encoded version of 𝑂𝑖 in the latent
space.

4. Decoding step. Compute Dec𝜃2 ∘𝐾 ∘ Enc𝜃1 ∘𝐽𝑛(𝑍), which maps the encoded version of 𝑂𝑖, that
is, 𝜇 + 𝜎 ⊙ (𝑍 (1), … , 𝑍 (𝑑)), to an element of 𝒳.

3.2 Formal training

Formally, training the VAE involves maximizing the likelihood of 𝑂1∶𝑛 within a parametric model of
laws by maximizing a lower bound of the likelihood. This process begins with the introduction of a
working model of mixtures for 𝑃. The working model (undoubtedly flawed) postulates the existence
of a latent random variable 𝑈 ∈ ℝ𝑑 and a parametric model of tractable conditional densities

{𝑜 ↦ 𝑝𝜃2(𝑜|𝑢) ∶ 𝑢 ∈ ℝ𝑑, 𝜃2 ∈ Θ2}

such that

• 𝑈 is drawn from the standard Gaussian law on ℝ𝑑;

• there exists 𝜃2 ∈ Θ2 such that, given 𝑈, 𝑂 is drawn from 𝑝𝜃2(⋅|𝑈 ).

Here, tractable densities refer to those that can be easily worked with analytically, while in contrast,
intractable densities are too complex to handle directly.

Therefore, the working model (undoubtedly flawed) postulates the existence of 𝜃2 ∈ Θ2 such that 𝑃
admits the generally intractable density

𝑜 ↦ ∫𝑝𝜃2(𝑜|𝑢)𝜙𝑑(𝑢)𝑑𝑢

where 𝜙𝑑 denotes the density of the standard Gaussian law on ℝ𝑑. As suggested by the use of the
parameter 𝜃2, the definition of the conditional densities 𝑝𝜃2(⋅|𝑢) (𝑢 ∈ ℝ𝑑) involves the decoder Dec𝜃2 .

Since directly maximizing the likelihood of 𝑂1∶𝑛 under the working model is infeasible, a secondary
parametric model of tractable conditional densities is introduced:

{𝑢 ↦ 𝑔𝜃1(𝑢|𝑂𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝜃1 ∈ Θ1}

to model the conditional laws of 𝑈 given 𝑂1, given 𝑂2, …, given 𝑂𝑛. Here too, the use of the parameter
𝜃1 indicates that the definition of the conditional densities 𝑔𝜃1(⋅|𝑂𝑖) (1 ≤ 𝑖 ≤ 𝑛) involves the encoder
Enc𝜃1.

Now, by Jensen’s inequality, for any 1 ≤ 𝑖 ≤ 𝑛 and all 𝜃 = (𝜃1, 𝜃2) ∈ Θ,
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log 𝑝𝜃2(𝑂𝑖) = log∫𝑝𝜃2(𝑂𝑖|𝑢)
𝜙𝑑(𝑢)

𝑔𝜃1(𝑢|𝑂𝑖)
𝑔𝜃1(𝑢|𝑂𝑖)𝑑𝑢

≥ ∫ log (𝑝𝜃2(𝑂𝑖|𝑢)
𝜙𝑑(𝑢)

𝑔𝜃1(𝑢|𝑂𝑖)
) 𝑔𝜃1(𝑢|𝑂𝑖)𝑑𝑢

= −KL(𝑔𝜃1(⋅|𝑂𝑖); 𝜙𝑑) + 𝐸𝑈∼𝑔𝜃1(⋅|𝑂𝑖)[log 𝑝𝜃2(𝑂𝑖|𝑈 )] =∶ LB
𝜃
(𝑂𝑖),

(3)

where KL denotes the Kullback-Leibler divergence and 𝑈 in the expectation is drawn from the
conditional law with density 𝑔𝜃1(⋅|𝑂𝑖). The notation LB is used to indicate that it represents a lower
bound. Thus, the likelihood of 𝑂1∶𝑛 under 𝜃2 ∈ Θ2 is lower-bounded by

𝑛
∑
𝑖=1

LB
𝜃
(𝑂𝑖)

for all 𝜃1 ∈ Θ1. As suggested earlier, training the VAE formally consists of solving

max
𝜃∈Θ

{
𝑛
∑
𝑖=1

LB
𝜃
(𝑂𝑖)} (4)

rather than solving

max
𝜃2∈Θ2

{
𝑛
∑
𝑖=1

log 𝑝𝜃2(𝑂𝑖)} .

4 How to build the VAE

4.1 A formal description

We implement the classes of encoders and decoders, that is {Enc𝜃1 ∶ 𝜃1 ∈ Θ1} and {Dec𝜃2 ∶ 𝜃2 ∈ Θ2},
as neural network models. Each encoder Enc𝜃1 and decoder Dec𝜃2 consist of a stack of layers of
two types: densely-connected and activation layers (linear, 𝑥 ↦ 𝑥; ReLU : 𝑥 ↦ max(0, 𝑥), softmax:
(𝑥1, 𝑥2) ↦ (𝑒𝑥1 , 𝑒𝑥2)/(𝑒𝑥1 + 𝑒𝑥2)). The neural networks are rather simple in design, but nevertheless
(moderately) high-dimensional and arguably over-parametrized, as discussed in Section 4.2.

The model {𝑢 ↦ 𝑔𝜃1(𝑢|𝑂𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛, 𝜃1 ∈ Θ1} is chosen such that 𝑈 drawn from 𝑔𝜃1(⋅|𝑂𝑖) is a
Gaussian vector with mean 𝜇𝑖 and covariance matrix diag(𝜎𝑖)2 where Enc𝜃1(𝑂𝑖, ⋅) = (𝜇𝑖, 𝜎𝑖, ⋅), that
is, when the 𝜃1-specific encoding of 𝑂𝑖 equals (𝜇𝑖, 𝜎𝑖). Remarkably, the left-hand side term in the
definition of LB𝜃(𝑂𝑖) (Equation 3) is then known in closed form:

−KL(𝑔𝜃1(⋅|𝑂𝑖); 𝜙𝑑) =
1
2

𝑑
∑
𝑗=1

(1 + log(𝜎2𝑖 )𝑗 − (𝜎2𝑖 )𝑗 − (𝜇2𝑖 )𝑗) , (5)

where (𝜇2𝑖 )𝑗 and (𝜎2𝑖 )𝑗 are the 𝑗-th components of 𝜇𝑖 ⊙ 𝜇𝑖 and 𝜎𝑖 ⊙ 𝜎𝑖, respectively. This is very
convenient, because Equation 5 makes estimating the term KL(𝑔𝜃1(⋅|𝑂𝑖); 𝜙𝑑) unnecessary, a task that
would otherwise introduce more variability in the procedure.

As for the model {𝑜 ↦ 𝑝𝜃2(𝑜|𝑢) ∶ 𝑢 ∈ ℝ𝑑, 𝜃2 ∈ Θ2}, the only requirement is that it must be chosen in
such a way that log 𝑝𝜃2(𝑂𝑖|𝑢) be computable for all 1 ≤ 𝑖 ≤ 𝑛, 𝜃2 ∈ Θ2 and 𝑢 ∈ ℝ𝑑. This is not a tall
order as soon as 𝑂 can be decomposed as a sequence of (e.g., time-ordered) random variables that
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are vectors with categorical, or integer or real entries. Indeed, it then suffices (i) to decompose the
likelihood accordingly under the form of a product of conditional likelihoods, and (ii) to choose a
tractable parametric model for each factor in the decomposition. We illustrate the construction of
{𝑜 ↦ 𝑝𝜃2(𝑜|𝑢) ∶ 𝑢 ∈ ℝ𝑑, 𝜃2 ∈ Θ2} in the context of our running example.

INFO Running example, cted.

In the context of this example, 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) with 𝑉 ∈ {0, 1}2, 𝑊 ∈ ℝ3, 𝐴 ∈ {0, 1} and
𝑌 ∈ ℝ. Since the source of randomness 𝑍 has dimension (𝑑 + 1), 𝑑 must satisfy 𝑑 = 𝑑1 + 3
for some integer 𝑑1 ≥ 1.
Set 𝜃 = (𝜃1, 𝜃2) ∈ Θ, 𝑢 ∈ ℝ𝑑, and let 𝜋 ∘ Dec𝜃2(𝑢) = ( ̃𝑣 , 𝑤̃ , 𝑎̃, ̃𝑦) ∈ 𝒪. The conditional
likelihood 𝑝𝜃2(𝑂|𝑢) (of 𝑂 given 𝑈 = 𝑢) equals

𝑝𝜃2(𝑉 ,𝑊 |𝑢) × 𝑝𝜃2(𝐴|𝑊 , 𝑉 , 𝑢) × 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢)

so it suffices to define the conditional likelihoods 𝑝𝜃2(𝑉 ,𝑊 |𝑢) (of (𝑉 ,𝑊 ) given 𝑈 = 𝑢),
𝑝𝜃2(𝐴|𝑊 , 𝑉 , 𝑢) (of 𝐴 given (𝑊 , 𝑉 ) and 𝑈 = 𝑢) and 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢) (of 𝑌 given (𝐴,𝑊 , 𝑉 ) and
𝑈 = 𝑢).

• We decide that 𝑉 and 𝑊 are conditionally independent given 𝑈 under 𝑝𝜃2(⋅|𝑢). There-
fore, it suffices to characterize the conditional likelihoods 𝑝𝜃2(𝑉 |𝑢) (of 𝑉 given 𝑈 = 𝑢)
and 𝑝𝜃2(𝑊 |𝑢) (of 𝑊 given 𝑈 = 𝑢).

• We choose 𝑤 ↦ 𝑝𝜃2(𝑤|𝑢) to be the Gaussian density with mean 𝑤̃ and identity
covariance matrix.
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INFO Running example, cted.

• The description of the conditional law of 𝑉 given 𝑈 = 𝑢 under 𝑝𝜃2(⋅|𝑢) is slightly more
involved. It requires that we give more details on the encoders and decoders.

– Like every encoder, Enc𝜃1 actually maps 𝒪 ×ℝ𝑑 to [ℝ𝑑1 ×{0}3]×[(ℝ∗+)𝑑1 ×{1}3]×ℝ𝑑.
In words, if Enc𝜃1(𝑜, ⋅) = (𝜇, 𝜎 , ⋅), then it necessarily holds that the three last
components of 𝜇 and 𝜎 are 0 and 1, respectively. Therefore the three last
components of the random vector 𝐾 ∘ Enc𝜃1 ∘𝐽𝑛(𝑍) equal 𝑍

(𝑑−2), 𝑍 (𝑑−1), 𝑍 (𝑑),
three independent standard normal random variables.

– To compute Dec𝜃2(𝑢) = ( ̃𝑣 , 𝑤̃ , ̃𝑦0, ̃𝑦1, 𝑎̃) ∈ 𝒳, we actually compute 𝑤̃ then ̃𝑣, then
( ̃𝑦0, ̃𝑦1, 𝑎̃).

∗ The output 𝑤̃ is a 𝜃2-specific deterministic function of the first 𝑑1 compo-
nents of 𝑢.

∗ The output ̃𝑣 is a 𝜃2-specific deterministic function of the (𝑑1 + 2) first
components of 𝑢.
More specifically, two (latent) probabilities 𝑔̃1, 𝑔̃2 are first computed, as
𝜃2-specific deterministic functions of the 𝑑1 first components of 𝑢. Then
̃𝑣1 and ̃𝑣2 are set to 1{Φ(𝑢(𝑑1+1)) ≤ 𝑔̃1} and 1{Φ(𝑢(𝑑1+2)) ≤ 𝑔̃2}, where Φ
denotes the standard normal cumulative distribution function (c.d.f) and
𝑢(𝑑1+1), 𝑢(𝑑1+2) are the (𝑑1 + 1)-th and (𝑑1 + 2)-th components of 𝑢.
For instance, ̃𝑣1 is given the value 1 if Φ(𝑢(𝑑1+1)) ≤ 𝑔̃1 and 0 otherwise.
Note that 1{Φ(𝑍 (𝑑1+1)) ≤ 𝑔̃1} follows the Bernoulli law with parameter 𝑔̃1
because 𝑍 (𝑑1+1) is drawn from the standard normal law.

∗ The output ( ̃𝑦0, ̃𝑦1) is a 𝜃2-specific deterministic function of ( ̃𝑣 , 𝑤̃ ) and the
𝑑1 first components of 𝑢.

∗ The output 𝑎̃ is a 𝜃2-specific deterministic function of ( ̃𝑣 , 𝑤̃ ) and the last
component of 𝑢.
More specifically, a (latent) probability ℎ̃ is first computed, as a 𝜃2-specific
deterministic function of ( ̃𝑣 , 𝑤̃ ). Then 𝑎̃ is set to 1{Φ(𝑢(𝑑)) ≤ ℎ̃}.
Note that 1{Φ(𝑍 (𝑑)) ≤ ℎ̃} follows the Bernoulli law with parameter ℎ̃ be-
cause 𝑍 (𝑑) is drawn from the standard normal law.

We are now in a position to describe the conditional law of 𝑉 given 𝑈 = 𝑢. We
decide that, conditionally on 𝑈 = 𝑢, under 𝑝𝜃2(⋅|𝑢), 𝑉1 and 𝑉2 are independently
drawn from the Bernoulli laws with parameters 𝑔̃1 and 𝑔̃2. Thus, 𝑝𝜃2(⋅|𝑢) is such that
𝑝𝜃2(𝑣 |𝑢) = [𝑣1𝑔̃1 + (1 − 𝑣1)(1 − 𝑔̃1)] × [𝑣2𝑔̃2 + (1 − 𝑣2)(1 − 𝑔̃2)] for 𝑣 = (𝑣1, 𝑣2) ∈ {0, 1}2.
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INFO Running example, cted.

• The description of the conditional law of 𝐴 given (𝑊 , 𝑉 ) and 𝑈 = 𝑢 under 𝑝𝜃2(⋅|𝑢)
is similar to that of 𝑉 given 𝑈. We decide that, conditionally on (𝑊 , 𝑉 ) and 𝑈 = 𝑢,
under 𝑝𝜃2(⋅|𝑊 , 𝑉 , 𝑢), 𝐴 follows the Bernoulli law with parameter ℎ̃(𝑉 ,𝑊 ), where
the probability ℎ̃(𝑣 , 𝑤) lies between ℎ̃ and 𝐴̄𝑛 ∶= 1

𝑛 ∑
𝑛
𝑖=1𝐴𝑖 and is given, for any

(𝑣 , 𝑤) ∈ {0, 1}2 × ℝ3, by

ℎ̃(𝑣 , 𝑤) ∶=𝑡(𝑣 , 𝑤)ℎ̃ + [1 − 𝑡(𝑣 , 𝑤)]𝐴̄𝑛 with
−10 log 𝑡(𝑣 , 𝑤) = − [𝑣1 log 𝑔̃1 + (1 − 𝑣1) log(1 − 𝑔̃1)]

− [𝑣2 log 𝑔̃2 + (1 − 𝑣2) log(1 − 𝑔̃2)]
+ ‖𝑤 − 𝑤̃‖22.

Thus, 𝑝𝜃2(⋅|𝑊 , 𝑉 , 𝑢) is such that 𝑝𝜃2(𝑎|𝑊 , 𝑉 , 𝑢) = 𝑎 ̃ℎ(𝑉 ,𝑊 ) + (1 − 𝑎)(1 − ℎ̃(𝑉 ,𝑊 )) for
𝑎 ∈ {0, 1}.

• Finally, we choose 𝑦 ↦ 𝑝𝜃2(𝑦 |𝐴,𝑊 , 𝑉 , 𝑢) to be the two-regime density given by

𝑝𝜃2(𝑦 |𝐴,𝑊 , 𝑉 , 𝑢) =
1{𝐴 = 𝑎̃}

̃𝑠(𝑊 )
𝜙1 (

𝑦 − ̃𝑦
̃𝑠(𝑊 )

) + 1{𝐴 ≠ 𝑎̃}𝐶−1

where ̃𝑠(𝑤) ∶= 1
√5
‖𝑤 − 𝑤̃‖2 for any 𝑤 ∈ ℝ3 and 𝐶 is the Lebesgue measure of the

support of the marginal law of 𝑌 under 𝑃 (it does not matter if 𝐶 is unknown).
Thus, two cases arise:

– If 𝐴 = 𝑎̃, then 𝑌 is conditionally drawn under 𝑝𝜃2(⋅|𝐴,𝑊 , 𝑉 , 𝑢) from the Gaussian
law with mean ̃𝑦 = 𝑎 ̃𝑦1 + (1 − 𝑎) ̃𝑦0 and variance ̃𝑠(𝑊 )2.

– Otherwise, 𝑌 is conditionally drawn under 𝑝𝜃2(⋅|𝐴,𝑊 , 𝑉 , 𝑢) from the uniform
law on the support of the marginal law of 𝑌 under 𝑃.

Therefore, the conditional likelihood 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢) bears information only if𝐴 = 𝑎̃
(that is, if the actions 𝐴 and 𝑎̃ undertaken when generating 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) and
computing Dec𝜃2(𝑢) coincide), which can be interpreted as a necessary condition to
justify the comparison of the rewards 𝑌 and ̃𝑦. Moreover, when 𝐴 = 𝑎̃, the closer
are the contexts 𝑊 and 𝑤̃, the more relevant is the comparison and the larger the
magnitude of 𝑝𝜃2(𝑌 |𝐴,𝑊 , 𝑉 , 𝑢) can be.
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INFO Running example, cted.

In summary, the right-hand side term in the definition of LB𝜃(𝑂𝑖) Equation 3 equals, up to a
term that does not depend on 𝜃,

1
2𝐸𝑈∼𝑔𝜃1(⋅|𝑂𝑖)[ − 2 (𝑉1,𝑖 log 𝐺̃1 + (1 − 𝑉1,𝑖) log(1 − 𝐺̃1))

− 2 (𝑉2,𝑖 log 𝐺̃2 + (1 − 𝑉2,𝑖) log(1 − 𝐺̃2))
− ‖𝑊𝑖 − 𝑊̃ ‖22
− 2 (𝐴𝑖 log 𝐻̃ + (1 − 𝐴𝑖) log[1 − 𝐻̃])

− 1{𝐴𝑖 = 𝐴̃} × (log ̃𝑆(𝑊𝑖)2 +
(𝑌𝑖 − 𝑌̃ )2

2 ̃𝑆(𝑊𝑖)2
) ],

(6)

with the notational conventions 𝜋 ∘ Dec𝜃2(𝑈 ) = (𝑉̃ , 𝑊̃ , 𝐴̃, 𝑌̃ ), 𝑉𝑖 = (𝑉𝑖,1, 𝑉𝑖,2), and where 𝐺̃1,
𝐺̃2, 𝐻̃, ̃𝑆 are defined like the above latent quantities 𝑔̃1, 𝑔̃2, ℎ̃, ̃𝑠 with 𝑈 substituted for 𝑢. The
expression is easily interpreted: the opposite of Equation 6 is an average risk that measures
- the likelihood of 𝑉𝑖,1 and 𝑉𝑖,2 from the points of view of the Bernoulli laws with parameters
𝐺̃1 and 𝐺̃2 (first and second terms), - the average proximity between 𝑊𝑖 and 𝑊̃ (third term),
- the likelihood of 𝐴𝑖 from the point of view of the Bernoulli law with parameter 𝐻̃ (fourth
term), - the average proximity between 𝑌𝑖 and 𝑌̃ (fifth term) only if 𝐴𝑖 = 𝐴̃ (otherwise, the
comparison would be meaningless).
In other terms, the opposite of Equation 6 can be interpreted as a measure of the average
faithfulness of the reconstruction of 𝑂𝑖 under the form 𝜋 ∘ Dec𝜃2(𝑈 ) with 𝑈 drawn from
𝑔𝜃1(⋅|𝑂𝑖). The larger is Equation 6, the better is the reconstruction of 𝑂𝑖 under the form
𝜋 ∘ Dec𝜃2(𝑈 ) with 𝑈 drawn from 𝑔𝜃1(⋅|𝑂𝑖).
To conclude, note that the conditional laws of 𝑊 and 𝑌, both Gaussian, could easily be
associated with diagonal covariance matrices different from the identity matrix. This
adjustment would be particularly relevant in situations where ‖𝑊 ‖2 and |𝑌 | are typically
not of the same magnitude, with 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) drawn from the law 𝑃 of the experiment
of interest. Alternatively, the genuine observations could be pre-processed to ensure that
‖𝑊 ‖2 and |𝑌 | are brought to comparable magnitudes.

The hope is that, once the VAE is trained, yielding a parameter ̂𝜃𝑛 = (( ̂𝜃𝑛)1, ( ̂𝜃𝑛)2), the corresponding
generator Gen ̂𝜃𝑛

produces a synthetic complete data 𝑋 ∈ 𝒳 such that the law of 𝜋(𝑋) ∈ 𝒪 closely
approximates 𝑃. Naturally, this approximation is closely related to the conditional densities 𝑔( ̂𝜃𝑛)1

(⋅|𝑂𝑖)
and 𝑝( ̂𝜃𝑛)2

(⋅|𝑢) (1 ≤ 𝑖 ≤ 𝑛, 𝑢 ∈ ℝ).

For instance, in the context of the running example, if 𝑂 = (𝑉 ,𝑊 , 𝐴, 𝑌 ) = 𝜋 ∘ Gen ̂𝜃𝑛
(𝑍) and if 𝜉 , 𝜁 are

independently drawn from the centered Gaussian laws with an identity covariance matrix on ℝ3 and
variance 1 on ℝ, respectively, then (𝑊 + 𝜉 , 𝐴, 𝑌 + 𝜁 ) follows a law that admits the density

(𝑣 , 𝑤, 𝑎, 𝑦) ↦ ∫𝑝( ̂𝜃𝑛)2
(𝑦 |𝑎, 𝑤, 𝑣 , 𝑢) × 1{𝑎 = 𝑎̃( ̂𝜃𝑛)2

(𝑢)}

× 𝑝( ̂𝜃𝑛)2
(𝑤, 𝑣 |𝑢) (1

𝑛

𝑛
∑
𝑖=1

𝑔( ̂𝜃𝑛)1
(𝑢|𝑂𝑖)) 𝑑𝑢,

where 𝑎̃( ̂𝜃𝑛)2
(𝑢) is defined as the 𝐴-coefficient of 𝜋 ∘ Dec( ̂𝜃𝑛)2

(𝑢).
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4.2 About the over-parametrization

In Section 4.1 we acknowledged that the models {Enc𝜃1 ∶ 𝜃1 ∈ Θ1} and {Dec𝜃2 ∶ 𝜃2 ∈ Θ2} are
over-parametrized in the sense that the dimensions of the parameter set Θ1 × Θ2 is potentially large.
For instance, the dimension of the model that we build in the next section is 1157. This is a common
feature of neural networks.

Our models are also over-parametrized in the sense that they are not identifiable. This is obviously
the case because of the loss of information that governs the derivation of an observation 𝑂 as a piece
𝜋(𝑋) of a complete data 𝑋 that we are not given to observe in its entirety.

INFO Running example, cted.

In particular, in the context of this example, it is well know that we cannot learn from
𝑂1, … , 𝑂𝑛 any feature of the joint law of the counterfactual random variables (𝑌 [0], 𝑌 [1])
that does not reduce to a feature of the marginal laws of 𝑌 [0] or 𝑌 [1], unless we make very
strong assumptions on this joint law (e.g., that 𝑌 [0] and 𝑌 [1] are independent).

This is not a source of concern. First, it is generally recognized that the fitting of neural networks
often benefits from the high dimensionality of the optimization space and the presence of numerous
equivalently good local optima, resulting in a redundant optimization landscape (Choromanska et
al. 2015), (Arora, Cohen, and Hazan 2018). Second, our objective is to construct a generator that
approximates the law 𝑃 of 𝑂1, … , 𝑂𝑛, generating 𝑂 ∈ 𝒪 by first producing 𝑋 ∈ 𝒳 (via Gen𝜃(𝑍)) and
then providing 𝜋(𝑋). The fact that two different generators Gen𝜃 and Gen𝜃′ can perform equally
well is not problematic. Identifying one generator Gen𝜃 that performs well is sufficient.

It is possible to search for generators that satisfy user-supplied constraints, provided these can be
expressed as a real-valued criterion 𝐹(𝐸[𝒞 (Gen𝜃(𝑍))]). For example, one may wish to construct a
generator Gen𝜃 such that the components of 𝑋 under law(Gen𝜃) exhibit a pre-specified correlation
pattern (as demonstrated in the simple example below).

To focus the optimization procedure on generators that approximately meet these constraints, one can
modify the original criterion Equation 4 by adding a penalty term. Specifically, given a user-supplied
hyper-parameter 𝜆 > 0, we can substitute

max
𝜃∈Θ

{
𝑛
∑
𝑖=1

LB
𝜃
(𝑂𝑖) + 𝜆𝐹(𝐸𝑍∼Unif{1,…,𝑛}⊗𝑁(0,1)⊗𝑑[𝒞 (Gen

𝜃
(𝑍))])} (7)

for Equation 4. From a computational perspective, this adjustment simply involves adding the term

𝜆𝐹 ( 1
𝑚

𝑚
∑
𝑖=1

𝒞(Gen
𝜃
(𝑍𝑚+𝑖))) (8)

to the expressions within the curly brackets in the definition of 𝑔 in the algorithm described in
Section 5.5.
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INFO Running example, cted.

In particular, in the context of this example, we could look for generators Gen𝜃 such
that the correlation of 𝑌 [0] and 𝑌 [1] under law(Gen𝜃(𝑍)) be close to a target correlation
𝑟 ∈]−1, 1[. In that case, we could choose𝒞(Gen𝜃(𝑍)) ∶= (𝑌 [0]𝑌 [1], 𝑌 [0]2, 𝑌 [1]2, 𝑌 [0], 𝑌 [1])
and 𝐹 ∶ (𝑎, 𝑏, 𝑐, 𝑑, 𝑒) ↦ |(𝑎 − 𝑑𝑒)/√(𝑏 − 𝑑2)(𝑐 − 𝑒2) − 𝑟 |.

5 Implementation of the VAE in the context of the running example

We now show how to implement the classes of encoders and decoders, hence of generators, in the
context of our running example. We will also define other loss functions that are needed to train the
model.

We implemented our approach using the TensorFlow package, but also experimented with PyTorch.
Both frameworks yielded similar results, with no noticeable differences in performance. However,
we found TensorFlow to be slightly more beginner-friendly, which might make it easier for readers
new to neural network frameworks to follow our implementation.

5.1 Implementing the encoder

The first chunk of code defines a function, namely build_encoder, to build Enc𝜃1 . The pa-
rameter latent_dim is the Python counterpart of 𝑑1. The parameters nlayers_encoder and
nneurons_encoder are the numbers of layers and of neurons in each layer, respectively. The
parameter L will be discussed later.

Traceback (most recent call last):
File "/home/runner/micromamba/envs/micromamba/lib/python3.12/site-packages/tensorflow/python/pywrap_tensorflow.py", line 27, in <module>

import ssl
File "/home/runner/work/published-202509-boulet-simulator/published-202509-

boulet-simulator/renv/cache/v5/linux-ubuntu-noble/R-4.5/x86_64-pc-linux-gnu/reticulate/1.43.0/0b3db378d9940f6846a626b24352530a/reticulate/python/rpytools/loader.py", line 122, in _find_and_load_hook
return _run_hook(name, _hook)

^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/work/published-202509-boulet-simulator/published-202509-

boulet-simulator/renv/cache/v5/linux-ubuntu-noble/R-4.5/x86_64-pc-linux-gnu/reticulate/1.43.0/0b3db378d9940f6846a626b24352530a/reticulate/python/rpytools/loader.py", line 96, in _run_hook
module = hook()

^^^^^^
File "/home/runner/work/published-202509-boulet-simulator/published-202509-

boulet-simulator/renv/cache/v5/linux-ubuntu-noble/R-4.5/x86_64-pc-linux-gnu/reticulate/1.43.0/0b3db378d9940f6846a626b24352530a/reticulate/python/rpytools/loader.py", line 120, in _hook
return _find_and_load(name, import_)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/runner/micromamba/envs/micromamba/lib/python3.12/ssl.py", line 100, in <module>

import _ssl # if we can't import it, let the error propagate
^^^^^^^^^^^

File "/home/runner/work/published-202509-boulet-simulator/published-202509-
boulet-simulator/renv/cache/v5/linux-ubuntu-noble/R-4.5/x86_64-pc-linux-gnu/reticulate/1.43.0/0b3db378d9940f6846a626b24352530a/reticulate/python/rpytools/loader.py", line 122, in _find_and_load_hook

return _run_hook(name, _hook)
^^^^^^^^^^^^^^^^^^^^^^

File "/home/runner/work/published-202509-boulet-simulator/published-202509-
boulet-simulator/renv/cache/v5/linux-ubuntu-noble/R-4.5/x86_64-pc-linux-gnu/reticulate/1.43.0/0b3db378d9940f6846a626b24352530a/reticulate/python/rpytools/loader.py", line 96, in _run_hook

module = hook()
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^^^^^^
File "/home/runner/work/published-202509-boulet-simulator/published-202509-

boulet-simulator/renv/cache/v5/linux-ubuntu-noble/R-4.5/x86_64-pc-linux-gnu/reticulate/1.43.0/0b3db378d9940f6846a626b24352530a/reticulate/python/rpytools/loader.py", line 120, in _hook
return _find_and_load(name, import_)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ImportError: /usr/lib/x86_64-linux-gnu/libcrypto.so.3: version `OPENSSL_3.3.0' not found (required by /home/runner/micromamba/envs/micromamba/lib/python3.12/lib-
dynload/_ssl.cpython-312-x86_64-linux-gnu.so)

Warning: Failed to load ssl module. Continuing without ssl support.

The code related to encoding is complete.

5.2 Implementing the decoder

The first chunk of code defines the component of Dec𝜃2 , namely build_WV_decoder, that generates
(𝑉 ,𝑊 ) based on 𝑈. It also defines a function, as_sample, that allows to approximately draw from
a discrete distribution. The parameters nlayers_WV_decoder and nneurons_WV_decoder are the
numbers of layers and of neurons in each layer, respectively. The parameter L will be discussed later.

We say that as_sample allows to sample approximately from a discrete distribution since we cannot
simply draw from it because of the need for this operation to be differentiable with respect to (w.r.t.)
the parameters of the neural network. Instead, we use the fact that, for 𝛽 > 0 a large constant and 𝑍
a standard normal random variable, the law of the random variable

expit(−𝛽(Φ(𝑍) − 𝑝)) (9)

(recall that Φ is the c.d.f. of the standard normal law) is concentrated around {0, 1}, a small neighbor-
hood of 1 having mass approximately 𝑝 and a small neighborhood of 0 having mass approximately
(1 − 𝑝). For instance Figure 2 shows the empirical cumulative distribution function of 1000 indepen-
dent copies of the random variable defined in Equation 9 with 𝛽 = 30 and 𝑝 = 1/3:

The second chunk of code defines the component of Dec𝜃2 , namely build_Alaw_decoder, that
generates a conditional law for 𝐴 given (𝑉 ,𝑊 ). The parameters nlayers_Alaw_decoder and
nneurons_Alaw_decoder are the numbers of layers and of neurons in each layer, respectively. The
parameter L will be discussed later.

The third chunk of code defines the component ofDec𝜃2 , namely build_AYaY_decoder, that generates
the counterfactual outcomes 𝑌 [0] and 𝑌 [1], the action carried out 𝐴 and the corresponding reward
𝑌. The parameters nlayers_AYaY_decoder and nneurons_AYaY_decoder are the numbers of layers
and of neurons in each layer, respectively. The parameter L will be discussed later.

Two comments are in order:

• Given the counterfactual rewards 𝑌 [0] and 𝑌 [1] (outputs of the layer 'Ya' in build_AYaY_decoder),
given the approximate action 𝐴♭ (output of the layer 'as_A' in build_AYaY_decoder), the
actual reward 𝑌 (output of the layer 'Y'in build_AYaY_decoder) is defined as the weighted
mean

𝑌 = 𝐴♭𝑌 [1] + (1 − 𝐴♭)𝑌 [0]

with 𝐴♭ close to 0 and 1 (see the above comment on as_sample).
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Figure 2: Empirical c.d.f. of 1000 independent copies of the random variable defined in Equation 9
with 𝛽 = 30 and 𝑝 = 1/3. The law is close the Bernoulli law with parameter 1

3 .

• The actual action 𝐴 (output of the layer lambda_A in build_AYaY_decoder) is derived from 𝐴♭

under the form

𝐴 =
ReLU (𝐴♭ − 1

2)

𝐴♭ − 1
2

,

assuming that 𝐴♭ never takes on the value 1
2 . By doing so, 𝐴 is (almost everywhere) differen-

tiable w.r.t. the parameters of the neural network.

The code related to decoding is complete.

5.3 Implementing the coarsening functions

The first chunk of code defines a function used to build the coarsening function 𝜋.

The next chunk of code defines a function used to extract the conditional probability that 𝐴 = 1
given 𝑊 (denoted earlier as 𝐺̃).

5.4 Implementing the generator

At long last we are in a position to define a function, namely build_generator, whose purpose is
to build the generator Gen𝜃. The chunk of code also defines the function K which is the Python
counterpart of 𝐾 introduced in Section 3.1 and Section 4.1.

5.5 Implementing the loss functions and training algorithm

The last step of the encoding consists of defining the loss functions and optimization algorithm to
drive the training of the VAE involved in Equation 6 by solving Equation 7. The definitions of the
loss functions follow straightforwardly from the equations. As for the optimization algorithm, we
rely on the minibatch stochastic ascent algorithm presented below:
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Algorithm 1 Minibatch stochastic gradient ascent training.
Require: number of epochs EPOCH, batch size 𝑚, number of repetitions 𝐿, learning rate 𝛼, expo-

nential decay rates 𝛽1 and 𝛽2 for the 1st and 2nd moments estimates, small constant 𝜖, initial
parameter 𝜃(0) = (𝜃(0)1 , 𝜃(0)2 ) ∈ Θ

1: Initialize 𝐷 ← {𝑂1, … , 𝑂𝑛}
2: Initialize 𝑡 ← 0, first(0) ← 0ℝdim(Θ) , second(0) ← 0ℝdim(Θ)

3: while 𝑡 < EPOCH do
4: Sample uniformly without replacement a minibatch of 𝑚 genuine observations 𝑂̃1, … , 𝑂̃𝑚

from 𝐷
5: Sample a minibatch of 𝑚 × 𝐿 independent sources of randomness

𝑍1,1, … , 𝑍1,𝐿, 𝑍2,1, … , 𝑍2,𝐿, … , 𝑍𝑚,1, … , 𝑍𝑚,𝐿 from (𝒩 (0, 1))⊗𝑑
6: for 𝑖 = 1, ⋯ , 𝑚 do
7: Compute Enc𝜃 (𝑡)1

(𝑂̃𝑖, 𝑍1,1) = ((𝜇𝑖)(𝑡), (𝜎2𝑖 )(𝑡), 𝑍1,1)
8: for ℓ = 1, ⋯ , 𝐿 do
9: 𝑈𝑖,ℓ ← (𝜇𝑖)(𝑡) + √(𝜎

2
𝑖 )(𝑡) ⊙ (𝑍 (1)

𝑖,ℓ , ⋯ , 𝑍 (𝑑)
𝑖,ℓ )

10: end for
11: end for
12: Update the encoder and decoder by performing one step of stochastic gradient ascent:
13: 𝑔 ← ∇𝜃 {

1
𝑚
∑𝑚

𝑖=1 (−KL(𝑔𝜃1(⋅|𝑂̃𝑖); 𝜙𝑑) +
1
𝐿
∑𝐿

ℓ=1 log 𝑝𝜃2(𝑂̃𝑖|𝑈𝑖,ℓ))}|𝜃=𝜃 (𝑡)
14: where, for each 1 ≤ 𝑖 ≤ 𝑚,
15: −KL(𝑔𝜃 (𝑡)1

(⋅|𝑂̃𝑖); 𝜙𝑑) =
1
2 ∑

𝑑
𝑗=1 (1 + log(𝜎2𝑖 )

(𝑡)
𝑗 − (𝜎2𝑖 )

(𝑡)
𝑗 − [(𝜇𝑖)

(𝑡)
𝑗 ]2)

16: first(𝑡+1) ← 𝛽1first
(𝑡) + (1 − 𝛽1)𝑔

17: second(𝑡+1) ← 𝛽2second
(𝑡) + (1 − 𝛽2)𝑔 ⊙ 𝑔

18: first
(𝑡+1)

← first(𝑡)

1 − 𝛽 𝑡+11

19: ŝecond
(𝑡+1)

← second(𝑡)

1 − 𝛽 𝑡+12

20: 𝜃(𝑡+1) ← 𝜃(𝑡) + 𝛼 first
(𝑡+1)

√ŝecond
(𝑡+1)

+ 𝜖
21:
22: Update 𝑡 ← 𝑡 + 1
23: end while

In our experiments, we set EPOCH = 10,𝑚 = 103, 𝐿 = 8, 𝛼 = 0.01, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−7. The
value of 𝐿 is chosen to be small for computational efficiency and to help the algorithm avoid getting
stuck in local minima. The initial parameter 𝜃(0) is drawn randomly as follows: each component
corresponding to a bias term in a densely-connected layer is set to 0; each component corresponding
to a kernel coefficient is drawn independently of the others from the Glorot uniform initializer (Glorot
and Bengio 2010) (that is, from the uniform law on √6/ℓ × [−1, 1] where ℓ is the sum of the number
of input units in the weight tensor and of the number of output units).

The next chunk of code defines the loss functions, optimization algorithm, and the VAE class which
wraps up the implementation. The so-called penalization_loss is the counterpart of Equation 8.
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6 Illustration on simulated data

In Section 2, in the context of the running example, we define a simulation law 𝑃 and simulated
from 𝑃 a training data set train and a testing data set test using the function simulate. The two
independent data sets consist of 𝑛 = 5000 mutually independent realizations 𝑂𝑖 = (𝑉𝑖, 𝑊𝑖, 𝐴𝑖, 𝑌𝑖) ∈ 𝒪.
We present here how to use train and the VAE coded in Section 5 to learn a function Gen𝜃 so that, if
𝑍 is sampled as in Equation 2, then Gen𝜃(𝑍) is a random element of 𝒳 and 𝜋 ∘ Gen𝜃(𝑍) is a random
element of 𝒪 whose law approximates 𝑃.

6.1 Training the VAE

By running the next chunk of code, we set the VAE’s configuration.

The next chunk of code repeatedly generates and initializes a VAE then trains it.

Because running the chunk is time-consuming (about 10 minutes on a standard laptop), we stored
one trained VAE that we considered good enough. We explain what we mean by good enough in the
next section.

6.2 A formal view on how to evaluate the quality of the generator

Suppose that we have built a generator Gen ̂𝜃𝑛
based on the genuine observations 𝑂1, …, 𝑂𝑛 drawn

from 𝑃. How can we assess how well the generator approximates 𝑃?

Ideally, we would like to evaluate the proximity between the generator associated with Gen𝜃𝑛 and the
true law 𝑃 of the observations. However, in practice, we do not have access to either law(Gen𝜃𝑛(𝑍))
or 𝑃. One approach would be to estimate a measure of discrepancy between these two laws (e.g.,
Kullback-Leibler divergence) using data sampled from each, which would allow us to test whether
one of several generators is closer to the true law than the others. However, we have opted for a
different approach, which, in essence, assesses how convincing synthetic observations drawn from
law(Gen𝜃𝑛(𝑍)) are in resembling observations drawn from 𝑃.

We propose three ways to address this question. Each of them uses the genuine observations 𝑂𝑛+1, …,
𝑂𝑛+𝑛′ that were not used to build Gen ̂𝜃𝑛

and 𝑁 synthetic observations 𝑂♯
1 , …, 𝑂♯

𝑁 drawn independently
from Gen ̂𝜃𝑛

.

6.2.1 Criterion 1

The overly faithful replication (a form of overfitting) by Gen ̂𝜃𝑛
of 𝑂1, …, 𝑂𝑛, the genuine observations

upon which its construction is based, is a pitfall that we aim to avoid. As a side note, the simplest gen-
erator that one can build from 𝑂1, …, 𝑂𝑛 is the empirical measure based on them, which corresponds
to the bootstrap approach (see Section 1.4).

The first criterion we propose is inspired by a commonly used machine learning metric for comparing
synthetic images generated by a neural network to the original training images. To assess the potential
over-faithfulness of the replication process, we suggest comparing two empirical distributions:

• 𝜇1∶𝑛, the empirical law of the distance to the nearest neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of each 𝑂𝑖
(1 ≤ 𝑖 ≤ 𝑛);

• 𝜇(𝑛+1)∶(𝑛+𝑛′), the empirical law of the distance to the nearest neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of
each 𝑂𝑛+𝑖 (1 ≤ 𝑖 ≤ 𝑛′).

Ideally, 𝜇1∶𝑛 and 𝜇(𝑛+1)∶(𝑛+𝑛′) should be similar, indicating that the training and testing performances
align well. However, if Gen ̂𝜃𝑛

replicates 𝑂1, … , 𝑂𝑛 too faithfully, then 𝜇1∶𝑛 will become very concen-
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trated around 0 while 𝜇(𝑛+1)∶(𝑛+𝑛′) will not exhibit the same behavior. Note that within a bootstrap
approach, the generator that merely samples uniformly from {𝑂1, … , 𝑂𝑛}would result in a 𝜇1∶𝑛 having
all its mass at 0 if we let 𝑁 go to infinity, according to the law of large numbers.

6.2.2 Criterion 2

The second criterion involves comparing the marginal distributions of each real-valued component
of 𝑂 under sampling from 𝑃 and from law(Gen ̂𝜃𝑛

(𝑍)). This comparison can be conducted visually, by
plotting the empirical distribution functions, or numerically, by computing 𝑝-values of hypotheses
tests. Depending on the nature of the components of 𝑂, appropriate tests include the binomial,
multinomial, 𝜒2 or Kolmogorov-Smirnov tests.

6.2.3 Criterion 3

The third criterion aims to capture discrepancies between 𝑃 and law(Gen ̂𝜃𝑛
(𝑍)) beyond marginal

comparisons. To do so in general we propose, for a user-specified collection of prediction algo-
rithms 𝒜1, … ,𝒜𝐾, to compare their outputs when trained on {𝑂1, … , 𝑂𝑛} versus {𝑂♯

1 , … , 𝑂♯
𝑛}, using

the predictions they make for each 𝑂𝑛+1, … , 𝑂𝑛+𝑛′ .

For instance, 𝒜1 could be an algorithm that learns to predict 𝐴 given (𝑉 ,𝑊 ) based on the logistic
regression model

{(𝑣 , 𝑤) ↦ 𝑚𝛾(𝑣 , 𝑤) ∶= expit(𝛾 0 + 𝛾 1(𝑣 , 𝑤)) ∶ 𝛾 = (𝛾 0, 𝛾 1) ∈ ℝ × ℝ5}.

Training𝒜1 on {𝑂1, … , 𝑂𝑛} (respectively, {𝑂♯
1 , … , 𝑂♯

𝑛}) yields 𝛾𝑛 (respectively, 𝛾 ♯𝑛 ), hence the predictions
𝑚𝛾𝑛(𝑉𝑛+𝑖, 𝑊𝑛+𝑖) and𝑚𝛾 ♯𝑛 (𝑉𝑛+𝑖, 𝑊𝑛+𝑖) (1 ≤ 𝑖 ≤ 𝑛). The closerGen ̂𝜃𝑛

approximates 𝑃, the nearer the points
(𝑚𝛾𝑛(𝑉𝑛+1, 𝑊𝑛+1), 𝑚𝛾 ♯𝑛 (𝑉𝑛+1, 𝑊𝑛+1)), …, (𝑚𝛾𝑛(𝑉𝑛+𝑛′ , 𝑊𝑛+𝑛′), 𝑚𝛾 ♯𝑛 (𝑉𝑛+𝑛′ , 𝑊𝑛+𝑛′)) are to the 𝑦 = 𝑥 line in
the 𝑥𝑦-plane.

Importantly, the algorithms need not rely on parametric working models. For instance, 𝒜2 could
learn to predict 𝐴 given (𝑉 ,𝑊 ) using a nonparametric algorithm such as a random forest.

6.3 Implementing an evaluation of the quality of the generator

We now show how to implement the three criteria presented in Section 6.2. The next chunk of code
loads the data into R: train and test are the R counterparts of the Python objects train and test
(keeping only the first 1000 observations) and synth is the collection of 1000 synthetic observations
drawn from the generator associated to the VAE that we stored in Section 6.1. For later use (while
implementing Criterion 1) we add a dummy column named Z.

6.3.1 Criterion 1

The next chunk of code implements the first criterion.

The two empirical c.d.f. shown in Figure 3 are quite similar, suggesting that 𝜇1∶𝑛 and 𝜇(𝑛+1)∶(𝑛+𝑛′)
are close. To quantify this proximity, we rely on statistical tests.

The Directed Acyclic Graph (DAG) in Figure 4 represents the experiment of law Π that consists
successively of

• drawing 𝑂1, …, 𝑂𝑛, 𝑂𝑛+1, …, 𝑂𝑛+𝑛′ independently from 𝑃;
• learning ̂𝜃𝑛;
• sampling 𝑂♯

1 , …, 𝑂♯
𝑁 independently from law(Gen ̂𝜃𝑛

(𝑍));
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Figure 3: Empirical c.d.f. of the distance to the nearest neighbor within the synthetic observations of
the training and of the testing data points (logarithmic scale). The two c.d.f. are quite close.

• determining, for each 1 ≤ 𝑖 ≤ 𝑛 + 𝑛′, the nearest neighbor 𝑓 ♯(𝑂𝑖) of 𝑂𝑖 among 𝑂♯
1 , …, 𝑂♯

𝑁.

The DAG is very useful to unravel how the random variables produced by Π depend on each other. In
particular, by 𝑑-separation (Lauritzen 1996), we learn from the DAG that the distances to the nearest
neighbor within {𝑂♯

1 , … , 𝑂♯
𝑁} of 𝑂1, …, 𝑂𝑛+𝑛′ are dependent pairwise. This dependency prevents the

use of a Kolmogorov-Smirnov test to compare 𝜇1∶𝑛 and 𝜇(𝑛+1)∶(𝑛+𝑛′).

Moreover, conditionally on 𝑂♯
1 , …, 𝑂♯

𝑁,

• 𝑂1, …, 𝑂𝑛 are not independent (because, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑂♯
1 is a collider on the path

𝑂𝑖 → 𝑂♯
1 ← 𝑂𝑗);

• 𝑓 ♯(𝑂1), …, 𝑓 ♯(𝑂𝑛+𝑛′) are independent (because, for any 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 𝑛′, all paths leading
from 𝑓 ♯(𝑂𝑖) to 𝑓 ♯(𝑂𝑗) are blocked);

• the distances to the nearest neighbor within {𝑂♯
1 , … , 𝑂♯

𝑁} of 𝑂𝑛+1, …, 𝑂𝑛+𝑛′ are mutually inde-
pendent.

Therefore, conditionally on 𝑂♯
1 , …, 𝑂♯

𝑁 and 𝜇1∶𝑛, we can use t-tests to compare the three first moments
of 𝜇(𝑛+1)∶(𝑛+𝑛′) to those of 𝜇1∶𝑛. By the central limit theorem and Slutsky’s lemma (van der Vaart
1998, Example 2.1 and Lemma 2.8), the tests are asymptotically valid as 𝑛′ goes to infinity.

The next chunk of code retrieves the 𝑝-values of the three tests using all 1000 synthetic observations.

# A tibble: 1 x 3
`1st_moment_test` `2nd_moment_test` `3rd_moment_test`

<dbl> <dbl> <dbl>
1 0.00706 0.0178 0.142

The 𝑝-values from the first two tests are small, but not strikingly so, especially when accounting for
multiple testing. This indicates only moderate evidence of a discrepancy.
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Figure 4: DAG representing how the random variables produced by Π depend on each other.

It is tempting to investigate what happens when only 100 synthetic observations are used.

# A tibble: 1 x 3
`1st_moment_test` `2nd_moment_test` `3rd_moment_test`

<dbl> <dbl> <dbl>
1 0.156 0.0865 0.0282

This time, only the 𝑝-value from the third tests is small, but not markedly so when accounting
for multiple testing. The evidence of a discrepancy is significantly weaker when 100 synthetic
observations are used compared to 1000. This highlights that distinguishing 𝑁 synthetic observations
from genuine observations becomes increasingly difficult as 𝑁 decreases.

6.3.2 Criterion 2

The next chunk of code implements the second criterion, in its visual form.

Firstly, inspecting the first row of Figure 5 suggests that the marginal laws of 𝑊1, 𝑊2, 𝑊3 under
the synthetic law do not align very well with their counterparts under 𝑃, although the locations
and ranges of the true marginal laws are reasonably well approximated. The restriction to ℝ+ of
the marginal law of 𝑊1 under the synthetic law is very similar to its counterpart under 𝑃, but its
restriction to ℝ− is too thin-tailed. As for the marginal laws of 𝑊2, 𝑊3 under the synthetic law, they
are too thin-tailed compared to their counterparts under 𝑃.

Secondly, inspecting the second row of Figure 5 reveals that the marginal laws of 𝑉1, 𝑉2 under the
synthetic law align perfectly (𝑉1) and reasonably well (𝑉2) with their counterparts under 𝑃. However,
the marginal law of 𝐴 under the synthetic law assigns more weight to the event [𝐴 = 1] than its
counterpart under 𝑃.

Lastly, inspecting the third row of Figure 5 reveals that the marginal law of 𝑌 under the synthetic
law does not align very well with its counterpart under 𝑃. While the location and range of the true
marginal law are reasonably well approximated, the overall shape of the true density is not faithfully
reproduced.
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Figure 5: Empirical c.d.f. of each covariate based on either the synthetic or the testing data sets.

The next chunk of code implements the version of the second criterion based on hypotheses testing.
Conditionally on the training data set, the testing procedures are valid because (i) the synthetic
and testing data sets are independent, (ii) the testing data are drawn independently from 𝑃, (iii) the
synthetic data are drawn independently from law(Gen ̂𝜃𝑛

(𝑍)).

We first address the continuous covariates (𝑊1, 𝑊2, 𝑊3 and 𝑌) and then the binary covariates (𝑉1, 𝑉2
and 𝐴). For the former, we use Kolmogorov-Smirnov tests. For the latter, we use exact Fisher tests.

# A tibble: 4 x 2
what p.val
<fct> <dbl>

1 W[1] 6.06e- 5
2 W[2] 2.43e-14
3 W[3] 6.14e-10
4 Y 2.55e- 7

# A tibble: 3 x 2
# Groups: what [3]
what p.val
<fct> <dbl>

1 V[1] 0.924
2 V[2] 0.117
3 A 0.000235

Most 𝑝-values are very small, supporting the conclusions drawn from inspecting Figure 5. Unlike
the marginal laws of 𝑉1, 𝑉2, the marginal laws of 𝑊1, 𝑊2, 𝑊3, 𝐴, 𝑌 are not well approximated, as the
tests detect discrepancies when both the synthetic and testing data sets contain 1000 data points.

Naturally, one might wonder whether this result still holds when comparing smaller synthetic and
testing data sets. The following chunk of code reproduces the same statistical analysis as before, but
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now using two samples of 100 data points each.

# A tibble: 4 x 2
what p.val
<fct> <dbl>

1 W[1] 0.386
2 W[2] 0.678
3 W[3] 0.0590
4 Y 0.921

# A tibble: 3 x 2
# Groups: what [3]
what p.val
<fct> <dbl>

1 V[1] 0.0542
2 V[2] 0.706
3 A 1

This time, the 𝑝-values are large, indicating that the tests cannot detect discrepancies when the
synthetic and testing data sets contain only 100 data points. Surprisingly, the same conclusion holds
when comparing a synthetic data set of 100 data points with a testing data set of 1000 data points, as
demonstrated in the next chunk of code.

# A tibble: 4 x 2
what p.val
<fct> <dbl>

1 W[1] 0.718
2 W[2] 0.849
3 W[3] 0.0466
4 Y 0.677

# A tibble: 3 x 2
# Groups: what [3]
what p.val
<fct> <dbl>

1 V[1] 0.568
2 V[2] 0.592
3 A 0.601

In conclusion, while a large synthetic data set can be shown to differ in law from a large testing
data set, a smaller synthetic data set does not exhibit noticeable differences in marginal laws when
compared to either a small or a large testing data set.

6.3.3 Criterion 3

The next chunk of code builds a super learning algorithm to estimate either the conditional proba-
bility that 𝐴 = 1 given (𝑊 , 𝑉 ) or the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ) by aggregating 5 base
learners. We use the SuperLearner package in R. Specifically, the 5 base learners estimate the above
conditional means by a constant (SL.mean), or based on generalized linear models (SL.glm and
SL.glm.interaction), or by a random forest (SL.ranger), or based on a single-hidden-layer neural
network (SL.nnet).

We train the super learning algorithm three times: once on each of two distinct halves of the training
data set, and once on half of the synthetic data set. This results in three estimators of the conditional
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probability that 𝐴 = 1 given (𝑊 , 𝑉 ) and three estimators of the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ).
The next chunk of code prepares the three training data sets.

# A tibble: 3 x 3
type data testing
<chr> <list> <list>

1 using training data a <tibble [500 x 7]> <tibble [1,000 x 7]>
2 using training data b <tibble [500 x 7]> <tibble [1,000 x 7]>
3 using synthetic data <tibble [500 x 7]> <tibble [1,000 x 7]>

The following chunk of code trains the super learning algorithm and evaluates the six resulting
estimators on the testing data points. To compare the estimators, we use scatter plots. Specifically,
denoting by p̂r1, p̂r2, p̂r3 the estimators of the conditional probability that 𝐴 = 1 given (𝑊 , 𝑉 )
obtained by training the super learning algorithm on each of the two distinct halves of the training
data set (p̂r1 and p̂r2), and on half of the synthetic data set (p̂r3), we plot in the left-hand side panel
{(p̂r1(𝑊𝑛+𝑖, 𝑉𝑛+𝑖), p̂r2(𝑊𝑛+𝑖, 𝑉𝑛+𝑖)) ∶ 1 ≤ 𝑖 ≤ 𝑛} (in red) and {(p̂r1(𝑊𝑛+𝑖, 𝑉𝑛+𝑖), p̂r3(𝑊𝑛+𝑖, 𝑉𝑛+𝑖)) ∶ 1 ≤
𝑖 ≤ 𝑛} (in blue).

Therein, the spread of the red scatter plot along the 𝑦 = 𝑥 line in the 𝑥𝑦-plane is an evidence of the
inherent and irreducible randomness that one faces when one learns the conditional probability that
𝐴 = 1 given (𝑊 , 𝑉 ). By comparison, the blue scatter plot is more widely spread around the line,
revealing a measure of discrepancy between the training and synthetic data.

The right-hand side panel is obtained analogously. The red scatter plot is more concentrated around
the 𝑦 = 𝑥 line than its counterpart in the left-hand side panel. The blue scatter plot is more widely
spread than the red one, which again reveals a measure of discrepancy between the training and
synthetic data. In summary, we consider that the red and blue scatter plots do not strongly differ
in their bulks. However, it seems that the blue scatter plots feature more outliers than their red
counterparts, revealing that the estimators may be quite different in some parts of the space of
covariates.

6.3.4 Summary

We implement three criteria to evaluate the synthetic observations. The first criterion compared
empirical distributions of distances between genuine observations, both involved and not involved
in the generator’s construction, and synthetic observations, detecting minor over-replication in
the synthetic data set. The second criterion assessed marginal distributions of individual features,
revealing discrepancies, particularly in continuous variables, which often exhibited overly thin tails.
The third criterion compared predictions from an algorithm trained on synthetic versus genuine
observations, showing good replication for predicting 𝑌 given (𝐴,𝑊 , 𝑉 ) but less so for predicting 𝐴
given (𝑊 , 𝑉 ). Overall, while the synthetic observations show some discrepancies from the genuine
ones, these differences are not overly substantial. Moreover, detecting significant differences becomes
much harder with smaller synthetic datasets (100 versus 1000 synthetic observations).

7 Illustration on real data

In this section, we extend the analysis conducted in the previous section to real data. We use a subset of
the International Warfarin Pharmacogenetics Consortium IWPC data set (The International Warfarin
Pharmacogenetics Consortium 2009). Warfarin therapy is a commonly prescribed anticoagulant
employed to treat thrombosis and thromboembolism.
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Figure 6: Comparing predicted conditional probabilities that 𝐴 = 1 given (𝑊 , 𝑉 ) (left) or predicted
conditional means of 𝑌 given (𝐴,𝑊 , 𝑉 ) (right) when a super learning algorithm is trained twice on
two distinct halves of the training data set (red points) or on the first half of the training data set,
𝑥-axis, and on half of the synthetic data set, 𝑦-axis (blue points).

7.1 The International Warfarin Pharmacogenetics Consortium data set

In order to limit the number of incomplete observations, we keep only the following variables:

• height, in centimeters;
• weight, in kilograms;
• indicator of whether or not VKORC1 consensus (obtained from genotype data) is “A/A”;
• indicator of whether or not CYP2C9 consensus (obtained from genotype data) is “*1/*1”;
• indicator of whether or not ethnicity is Asian;
• indicator of whether or not therapeutic dose of Warfarin is greater than or equal to 21 mg;
• international normalized ratio on reported therapeutic dose of Warfarin (INR, a measure of
blood clotting function).

The original database includes 3193 patients with complete observations for these variables. We
refer to the table below for a brief description of the data, and emphasize that 𝐴 does precede 𝑌.

Let us load the data set into Python.

It is convenient to rescale the continuous variables.

We finally define the training and testing data sets.

The three first observations in 'train':
V_1 V_2 V_3 W_1 W_2 A Y

[[1. 0. 0. 0.688 0.515 1. 0.121]
[0. 0. 1. 0.584 0.13 0. 0.029]
[0. 0. 1. 0.402 0.169 0. 0.04 ]]
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Table 1

Variables Descriptive statistics

n (%) or Min Median Mean Max SD
V1 VKORC1 consensus is A/A 1,150 (36%)
V2 CYP2C9 consensus is *1/*1 2,467 (77%)
V3 Ethnicity is Asian 1,087 (34%)
W1 Height (cm) 125 168 168 202 10.9
W2 Weight (kg) 30 73.0 76.9 238 22.0
A Therapeutic dose >= 21 mg per week 2,336 (73%)
Y INR 4 65.3 74.1 680 47.1

7.2 Training the VAE

By running the next chunk of code, we set the VAE’s configuration.

The next chunk of code repeatedly generates and initializes a VAE then trains it.

Because running the chunk is time-consuming, we stored one trained VAE that we considered good
enough. We now turn to its evaluation based on the three criteria discussed in Section 6.2 and
Section 6.3.

7.3 Evaluating the quality of the generator

The next chunk of code defines in R the counterparts train and test of the Python objects train
and test (keeping only the first 1000 observations), and synth, the collection of 1000 synthetic
observations drawn from the generator associated to the VAE that we stored in Section 7.2. For later
use (while implementing Criterion 1) we add a dummy column named Z.

7.3.1 Criterion 1

The next chunk of code implements the first criterion.

The two empirical c.d.f. shown in Figure 7 are not as similar as those in Figure 3. The next chunk of
code implements the t-tests comparing the three first moments of 𝜇(𝑛+1)∶(𝑛+𝑛′) to those of 𝜇1∶𝑛.

# A tibble: 1 x 3
`1st_moment_test` `2nd_moment_test` `3rd_moment_test`

<dbl> <dbl> <dbl>
1 7.59e-13 2.47e-18 8.18e-26

The numerical evidence of discrepancy is compelling. But is it still as compelling when only 100
synthetic observations are used? The next chunk of code addresses this question.

# A tibble: 1 x 3
`1st_moment_test` `2nd_moment_test` `3rd_moment_test`

<dbl> <dbl> <dbl>
1 0.0330 0.0135 0.00313

The strength of evidence has dropped considerably, reflected by the larger 𝑝-values compared to
earlier results. As in Section 6.3, distinguishing 𝑁 synthetic observations from genuine observations
becomes more challenging when 𝑁 = 100 compared to 𝑁 = 1000.
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Figure 7: Empirical c.d.f. of the distance to the nearest neighbor within the synthetic observations of
the training and of the testing IWPC data points (logarithmic scale). The two c.d.f. are quite close.

7.3.2 Criterion 2

The next chunk of code implements the second criterion, in its visual form.

Figure 8 suggests that except for 𝑉2, 𝐴 and, to a lesser extent, 𝑉1, the marginal laws under the
synthetic law do not align well with their counterparts under 𝑃. This is confirmed by the following
(Kolmogorov-Smirnov or exact Fisher) hypotheses tests:

# A tibble: 3 x 2
what p.val
<fct> <dbl>

1 W[1] 1.93e- 25
2 W[2] 5.53e-180
3 Y 4.37e- 32

# A tibble: 4 x 2
# Groups: what [4]
what p.val
<fct> <dbl>

1 V[1] 1.08e- 3
2 V[2] 5.99e- 1
3 V[3] 2.23e-22
4 A 3.59e- 1

One might again question whether this result persists when comparing smaller synthetic and testing
datasets. The next chunk of code replicates the previous statistical analysis, this time using two
samples of 100 data points each.

# A tibble: 3 x 2
what p.val
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Figure 8: Empirical c.d.f. of each covariate based on either the synthetic observations or the testing
IPWC data set.

<fct> <dbl>
1 W[1] 0.373
2 W[2] 0.00184
3 Y 0.0590

# A tibble: 4 x 2
# Groups: what [4]
what p.val
<fct> <dbl>

1 V[1] 1
2 V[2] 0.596
3 V[3] 1
4 A 1

This time, except for 𝑊2, the 𝑝-values are large, indicating that the tests cannot detect discrepancies
when the synthetic and testing data sets each contain only 100 data points. As observed in Section 6.3,
a similar conclusion holds when comparing a synthetic dataset of 100 data points with a testing
dataset of 1000 data points, with 𝑌 now also associated with a small 𝑝-value. This is demonstrated by
the next chunk of code.

# A tibble: 3 x 2
what p.val
<fct> <dbl>

1 W[1] 0.129
2 W[2] 0.000000179
3 Y 0.00730

# A tibble: 4 x 2
# Groups: what [4]
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what p.val
<fct> <dbl>

1 V[1] 1
2 V[2] 1
3 V[3] 0.0830
4 A 1

In conclusion, although a large synthetic dataset can be shown to differ in distribution from a large
testing dataset, a smaller synthetic dataset does not display clear differences in marginal distributions
(apart from 𝑊3 and potentially 𝑌) when compared to a small testing dataset.

7.3.3 Criterion 3

The next chunk of code builds a super learning algorithm to estimate either the conditional probability
that 𝐴 = 1 given (𝑊 , 𝑉 ) or the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ) by aggregating the same 5 base
learners as in Section 6.3.

We train the super learning algorithm three times: once on each of two distinct halves of the training
data set, and once on half of the synthetic data set. This results in three estimators of the conditional
probability that 𝐴 = 1 given (𝑊 , 𝑉 ) and three estimators of the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ).
The next chunk of code prepares the three training data sets.

# A tibble: 3 x 3
type data testing
<chr> <list> <list>

1 using training data a <tibble [500 x 7]> <tibble [1,000 x 7]>
2 using training data b <tibble [500 x 7]> <tibble [1,000 x 7]>
3 using synthetic data <tibble [500 x 7]> <tibble [1,000 x 7]>

The following chunk of code trains the super learning algorithm and evaluates the six resulting
estimators on the testing data points. To compare the estimators, we use scatter plots in the same
manner as in Section 6.3.

Therein, the spread and asymmetry of the red scatter plot along the 𝑦 = 𝑥 line in the 𝑥𝑦-plane are
evidences of how difficult it is to estimate the conditional probability that 𝐴 = 1 given (𝑊 , 𝑉 ). To
ease comparisons, we also superimpose the regression lines obtained by fitting two separate linear
models on the blue and red data points. By comparison, the blue scatter plot is less widely spread
than the red one, around the blue line which deviates more from the 𝑦 = 𝑥 line than the red one.

The right-hand side panel is obtained analogously. The red scatter plot is more concentrated around
the 𝑦 = 𝑥 line than its counterpart in the left-hand side panel. This indicates that it is less difficult
to estimate the conditional mean of 𝑌 given (𝐴,𝑊 , 𝑉 ) than the probability that 𝐴 = 1 given (𝑊 , 𝑉 ).
The blue scatter plot is more widely spread than the red one, which again reveals a measure of
discrepancy between the training and synthetic data. This is counterbalanced by the fact that the
blue regression line almost coincides with the 𝑦 = 𝑥 line, whereas the red one deviates from it.

7.4 Summary

We implemented the same three criteria as in Section 6.3. Overall, the synthetic observations showed
more substantial discrepancies from the IWPC (genuine) ones compared to the analysis on simulated
data. Furthermore, detecting significant differences remained challenging with smaller synthetic
datasets (100 versus 1000 synthetic observations), but the gaps were more evident in the real-data
context.
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Figure 9: Comparing predicted conditional probabilities that 𝐴 = 1 given (𝑊 , 𝑉 ) (left) or predicted
conditional means of 𝑌 given (𝐴,𝑊 , 𝑉 ) (right) when a super learning algorithm is trained twice on
two distinct halves of the training IWPC data set (red points) or on the first half of the training IWPC
data set, 𝑥-axis, and on half of the synthetic data set, 𝑦-axis (blue points).

8 Conclusion

This final section contextualizes our study by reviewing related works, discussing the challenges
and limitations encountered, and offering a closing reflection on the broader implications of our
approach and findings.

8.1 Related works

Before the advent of neural networks, synthetic tabular data were typically generated by modeling
the joint law of genuine tabular data and sampling from it. The parametric models involved canonical
distributions and were often restricted to low-dimensional settings, due to computational limitations
and the challenges of effectively encoding large, parameterized classes of functions.

With the emergence of neural networks, numerous studies have focused on generating synthetic
data across diverse fields, including image generation (Yi, Walia, and Babyn 2019), video synthesis
(Vondrick, Pirsiavash, and Torralba 2016), natural language processing (Lee 2018), and healthcare
(Che et al. 2017), (Choi et al. 2017), (Baowaly et al. 2018), (Lee 2018), (Yi, Walia, and Babyn 2019).
Most of these studies employed Generative Adversarial Networks (GANs, Goodfellow et al. (2014)), as
seen in works such as (Creswell et al. 2018), (Gui et al. 2023), (Aggarwal, Mittal, and Battineni 2021),
(Figueira and Vaz 2022). However, VAEs and their extensions, as well as techniques like normalizing
flows (D. Rezende and Mohamed 2015) and nonequilibrium thermodynamics (Sohl-Dickstein et al.
2015), were also utilized.

For instance, Xu et al. (2019) proposed the Conditional Tabular GAN (CTGAN) to address challenges
specific to tabular data, such as the mix of discrete and continuous variables, multiple modes in
continuous variables, and imbalanced discrete variables. Their approach included mode-specific
normalization, architectural modifications, a conditional generator, and training-by-sampling to
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improve performance. Additionally, they introduced the Tabular Variational Auto-Encoder (TVAE)
for mixed-type tabular data generation.

Inspired by a randomized controlled trial (RCT) in the treatment of Human Immunodeficiency Virus
(HIV), Petrakos, Moodie, and Savy (2025) recently conducted an empirical comparison of several
strategies and two data generation techniques aimed at generating synthetic tabular RCT data while
preserving the underlying multivariate data distribution. One of these techniques was based on
the aforementioned CTGAN, and the other on a more traditional statistical method. Their findings
indicate that the most effective approach for generating synthetic RCT data involves a sequential
generation process. This process begins with an R-vine copula model to generate baseline variables,
followed by a simple random treatment allocation to simulate the RCT environment, and concludes
with regression models for post-treatment variables, such as the trial outcome.

In a causal framework, Kocaoglu et al. (2017) proposed an adversarial training procedure to learn
a causal implicit generative model for a given causal graph. They demonstrated that when the
generator’s structure aligns with the causal graph, GANs can effectively train causal implicit gener-
ative models. Their approach involved a two-stage procedure: first, they trained a causal implicit
generative model over binary labels using a Wasserstein GAN (WGAN, Arjovsky, Chintala, and
Bottou (2017), Gulrajani et al. (2017)) consistent with the causal graph as the generator. Next, they
introduced a novel conditional GAN architecture, called CausalGAN, which incorporates an anti-
labeler network alongside a labeler network in its loss function. They showed that this architecture
enables sampling from the correct conditional and interventional distributions.

Works more similar to ours include the following. Athey et al. (2024) proposed using GANs to
generate synthetic data that mimic genuine data, aimed at assessing the performance of statistical
methods. To illustrate their approach, they employed WGANs to generate the covariates (𝑉 ,𝑊 )
conditional on the treatment 𝐴, followed by the outcome variable 𝑌 conditional on 𝐴. The resulting
synthetic data were used to estimate average treatment effects.

Neal, Huang, and Raghupathi (2021) presented RealCause, an alternative approach to simulate
realistic data using neural networks. Unlike our approach, they first sampled (𝑉 ,𝑊 ) directly from
the genuine data and then generated samples for 𝐴 (conditionally on (𝑊 , 𝑉 )) and 𝑌 (conditionally on
(𝐴,𝑊 , 𝑉 )).

Parikh et al. (2022) introduced Credence, a deep generative model-based framework for evaluating
causal inference methods. A distinctive feature of their approach is its ability to specify ground truth
for both the form and magnitude of causal effects and confounding bias as functions of covariates.
Like us, they used a VAE but modeled the joint law of (𝑉 ,𝑊 , 𝐴, 𝑌 ) by decomposing it into the two
conditional laws of 𝑌 given (𝐴,𝑊 , 𝑉 ) and of (𝑉 ,𝑊 ) given 𝐴, along with the marginal law of 𝐴.
However, their decomposition of the likelihood differs from ours.

Naturally, researchers have also focused on evaluating the quality of synthetic data. For instance, Alaa
et al. (2022) proposed three metrics (𝛼-precision, 𝛽-recall, authenticity) to assess the fidelity, diversity,
and generalization performance of data generators. In their work, each sample is individually
classified as either high-quality or low-quality.

To conclude, Lu et al. (2024) provided a comprehensive systematic review of studies utilizing machine
learning models to generate synthetic data, offering a valuable synthesis of the field’s progress and
challenges.

8.2 Challenges and limitations

The question of what volume of data is required is important. It is widely accepted that “the more
data, the better.” However, this simple adage overlooks the need to explicitly link the required data
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volume to both (i) the size and complexity of the input data, and (ii) the complexity of the neural
network being fitted. In this study, we chose to (i) simulate five times as many genuine observations
as the number of observations in the IWPC real data example, and (ii) build neural networks of
comparable complexity in both illustrations (see Section 6, Section 7). When testing our approach
to building a simulator on simulated data, we found that increasing the sample size of the genuine
observations by two- to threefold, and moderately augmenting the complexity of the neural network
(e.g., by adding one or two more layers to the encoder and each component of the decoder and/or by
doubling the number of neurons in each layer), did not lead to significant changes in the quality of
the results.

The choice of architecture is, in a sense, a meta-hyperparameter. In addition, several other hyper-
parameters must be selected by the data scientist, including the number of layers, the number of
neurons per layer, 𝛽, and the parameters used in Algorithm 1. It is certain that the architecture can
be improved on a case-by-case basis. The data scientist’s task could benefit from input from domain
experts. As for the other hyperparameters, we do not claim that our choices are optimal. However,
selecting appropriate optimality criteria and optimizing the choices based on them are challenging
tasks.

The results of our study, while informative, are somewhat disappointing. As reported in the first
paragraph of this section, increasing the quantity of genuine data substantially did not improve the
simulator’s performance in this context. This is in stark contrast to fields like image generation,
where the abundance of inherent regularities in visual patterns enables models to learn effectively
from larger datasets. In our case, the limited improvement may stem from a lack of rich regularities
in the genuine data, which constrains the simulator’s ability to capture meaningful structures.

Another challenge lies in the question of sharing the simulator, which has implications for privacy-
preserving analytics. While making the simulator widely available would be appealing, it raises
concerns about the genuine data required to run the code. This dependency could potentially
compromise the privacy or utility of the original dataset, creating additional barriers to adoption.

It is also worth noting that we deliberately neutralized in this article the VAE’s repeated training
from random initializations due to the high computational time required. This is telling to the extent
that the computational cost underscores a practical limitation of the approach: the trade-off between
feasibility and the potential benefits of repeated and extended training cycles, which might otherwise
improve the simulator’s performance.

Looking ahead, addressing some of these limitations requires practical and theoretical advances. For
instance, future efforts could focus on effectively handling missing data (NA values) within the simula-
tion framework. Additionally, establishing general design principles for simulator architectures could
improve their robustness and adaptability across a variety of datasets and applications. Moreover, it
would be interesting to investigate how the notion of energy scores of Gneiting and Raftery (2007)
may be used to develop new criteria to evaluate a generator’s performance. The potential relevance
of our study in the context of simulation-based inference in Bayesian computation presents another
promising avenue for future work.
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INFO Take-home message

We highlighted key considerations in designing and testing simulators. First, we emphasized
that simply increasing the volume of data does not guarantee improved simulator perfor-
mance, especially when the data lacks rich regularities. We also discussed the complexities
of composing the right architecture for the neural network and selecting appropriate hyper-
parameters to train it. Although it is tempting to rely on larger datasets and more complex
models, increasing the data size or network complexity did not significantly improve the
results. Additionally, we touched upon the challenges of sharing simulators, particularly in
the context of privacy-preserving analytics, where data dependencies may raise privacy
concerns. We also noted the computational burden of training, which limits the feasibility
of repeated training cycles. Finally, while our approach addresses some of these challenges,
future efforts should focus on handling missing data, developing universal design principles
for simulator architectures, elaborating new criteria of a generator’s performance, and
exploring the potential relevance of our study in the context of simulation-based inference
in Bayesian computation.

8.3 Closing reflection

As we reflect on the limitations and implications of simulators, it is worth revisiting the paragraph in
Section 1.4 where we state that parametric simulators “cannot convincingly replicate the multifaceted
interactions and variability inherent in ‘nature’ ”. The lexical field surrounding “nature” itself warrants
reflection.

Historically, the notion of “nature” has evolved significantly. In ancient Greece, philosophers used
the term “physis”, nowadays often translated as “nature”, to explore the inherent essence or intrinsic
qualities of things. “Natura”, the Roman adaptation, extended these ideas, while medieval thought
integrated nature into theological frameworks, portraying it as divine creation.

Often regarded as a figure of the late Renaissance and an early architect of the Scientific Revolution,
Bacon emphasized in 1620 the idea of conquering nature, viewing it as an object to be studied,
understood, and controlled – “for nature is only to be commanded by obeying her” (Bacon 1854).
During the Enlightenment, the concept of “nature” further shifted, increasingly separating it from
humanity and framing it as an object of scientific study and exploitation. These developments have
frequently served as a conceptual tool to justify humanity’s dominion and looting of the non-human
world.

In this context, referring to “nature” as something simulations seek to imitate is a testament to the
evolving notion of “nature,” now encompassing phenomena like human health. This shift should
be questioned, especially if it follows the Enlightenment logic of treating “nature” as an object to
be understood, controlled, and exploited. Applying such a framework to humans risks reducing
individuals to abstract data points or exploitable systems, ignoring their intrinsic complexity and
moral agency.

Recognizing these risks invites us to critically examine not only the limitations of simulators but
also their ethical and philosophical implications. Among these are the challenges posed by a lack of
fair representability in the data used to train algorithms, which can perpetuate existing inequities or
create new ones. Fairness becomes a central issue, particularly when simulations influence decisions
that affect diverse populations, as the underlying models may not account for all relevant perspectives
or experiences. Furthermore, the use of advanced simulations can contribute to elitism, as access to
the expertise and computational resources needed to develop and deploy such systems is far from
being universal, with numerous countries facing more urgent challenges. Finally, the environmental
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and financial cost of training complex algorithms, particularly those based on generative AI, raises
questions about sustainability and the trade-offs between progress and resource consumption.

Fiction has always provided a space to explore hypothetical scenarios that might be impractical,
impossible, or even unethical in reality. Utopian and dystopian literature, for example, simulates alter-
native societies to test ideas about governance, morality, and human behavior. Similarly, speculative
fiction pushes boundaries by imagining futures shaped by scientific and technological advancements.
In doing so, fiction serves as a conceptual laboratory, allowing its creators and audiences to in-
vestigate possibilities and their consequences. This creative exploration, which has long shaped
human understanding, should continue to inform and inspire the design and purpose of computer
simulations.
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