
ISSN 2824-7795

Fast confidence bounds for the false
discovery proportion over a path of
hypotheses

Guillermo Durand
1

Université Paris-Saclay, CNRS, Inria, Laboratoire de Mathématiques d’Orsay,

91405, Orsay, France

Date published: 2025-10-09 Last modified: 2025-10-09

Abstract

This paper presents a new algorithm (and an additional trick) that allows to compute fastly an

entire curve of post hoc bounds for the False Discovery Proportion when the underlying bound

V ∗
R construction is based on a reference family R with a forest structure à la Durand et al. (2020).

By an entire curve, we mean the values V ∗
R(S1), . . . , V

∗
R(Sm) computed on a path of increasing

selection sets S1 ⊊ · · · ⊊ Sm, |St| = t. The new algorithm leverages the fact that going from St

to St+1 is done by adding only one hypothesis. Compared to a more naive approach, the new

algorithm has a complexity in O(|K|m) instead of O(|K|m2), where |K| is the cardinality of the

family.

Keywords: multiple testing, algorithmic, post hoc inference, false discovery proportion, confidence

bound

Contents

1 Introduction 2

2 Notation and reference family methodology 4
2.1 Multiple testing notation . 4

2.2 Post hoc bounds with reference families . 6

2.3 Regions with a forest structure . 7

3 New algorithms 10
3.1 Pruning the forest . 10

3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection sets 11

3.3 Illustration on a detailed example . 14

4 Implementation 19

5 Numerical experiments 20

6 Conclusion 22
1

Corresponding author: guillermo.durand@universite-paris-saclay.fr

1

https://orcid.org/0000-0003-4056-5631
https://www.universite-paris-saclay.fr/
https://www.cnrs.fr
https://team.inria.fr/celeste/
https://www.imo.universite-paris-saclay.fr
mailto:guillermo.durand@universite-paris-saclay.fr

7 Proofs 24
7.1 Proofs of Section 3.1 . 24

7.1.1 Proof of Proposition 3.1 . 24

7.1.2 Proof of Proposition 3.2 . 25

7.2 Proof of Theorem 3.1 . 25

7.2.1 Derivation of (18) . 25

7.2.2 Proof that Pt ∈ P . 26

7.2.3 Proof of (16) and (17) . 27

7.3 Proof of Proposition 2.1 . 33

7.3.1 Direct proof that |K| ≤ 2m− 1 . 34

Acknowledgements 35

References 35

Session information 37

1 Introduction

Multiple testing theory is often used for exploratory analysis, like in Genome-Wide Association

Studies, where multiple features are tested to find promising ones. Classical multiple testing theory

like Family-Wise Error Rate (FWER) control or False Discovery Rate (FDR) control (Benjamini and

Hochberg, 1995) can be used, but a more recent trend consists in the computation of confidence

upper bounds for the number of false discoveries, or, equivalently, for the False Discovery Proportion

(FDP). This approach is notably advocated in the context of exploratory research by (Goeman and

Solari, 2011, Section 1).

Mathematically speaking, assume that we observe some data X that is formally a random variable

defined on some probability space equipped of the probability measure P, and that the distribution of

X , denoted by P , belongs to a model F. We want to test m null hypotheses H0,1, . . . ,H0,m ⊂ F. A

confidence upper bound (also frequently named post hoc bound, post selection bound or confidence

envelope) is then a function V̂ : P(N∗
m)→ Nm, where Nm = {0, . . . ,m}, N∗

m = {1, . . . ,m}, such

that

∀α ∈ (0, 1), P
(
∀S ⊆ N∗

m, |S ∩H0| ≤ V̂ (S)
)
≥ 1− α. (1)

Here, α is a target error rate andH0 = {i : P ∈ H0,i} is the set of indices of the null hypotheses that

are true. Note that the construction of V̂ depends on α and on the data X , and the dependence is

omitted to lighten notation and because there is no ambiguity. The meaning of Equation (1) is that V̂
provides an upper bound for the number of null hypotheses in S for any selection set S ⊆ N∗

m, that

is, the number |S ∩H0| of false discoveries in S. This allows the user to perform post hoc selection

on their data without breaching the statistical guarantee. Also note that by dividing by |S| ∨ 1 in

Equation (1) we also get a confidence bound for the FDP:

∀α ∈ (0, 1), P

(
∀S ⊆ N∗

m,FDP(S) ≤ V̂ (S)

|S| ∨ 1

)
≥ 1− α. (2)

So post hoc bounds provide ways to construct FDP-controlling sets instead of FDR-controlling sets,

which is much more desirable given the nature of the FDR as an expected value. See for example

(Bogdan et al., 2015, Figure 4) for a credible example where the FDR is controlled but the FDP has

a highly undesirable behavior (either 0 because no discoveries at all are made, either higher than

the target level). The construction is the following: one can compute the largest S such that
V̂ (S)
|S|∨1

2

is less than or equal to a nominal level q, and (2) ensures that, with high probability, the FDP of

S is upper-bounded by q. The control of the FDP with high probability is sometimes called False

Discovery Exceedance (FDX) control.

Post hoc bounds have notably been applied to genetic data. For example, in Goeman and Solari

(2011) and Enjalbert-Courrech and Neuvial (2022), the authors apply post hoc bounds to an Urothelial

Bladder Carcinoma RNA sequencing dataset to detect genes differentially expressed between stage

II and stage III of the disease. Furthermore, the R (R Core Team, 2024) package IIDEA (Enjalbert

Courrech and Neuvial (2025), see also Enjalbert Courrech (2024), Chapter 3) implements a user-

friendly shiny application (Chang et al., 2025) that computes post hoc bounds for differential

expression analyses, where the user can upload their own microarray or bulk RNAseq data file (the

application also comes with the aforementioned dataset).

Another field where post hoc bounds have been successfully applied is functional Magnetic Res-

onance Imaging (fMRI) studies, where each voxel of an image is tested to detect activation of the

corresponding brain region during a given task. Using the aforementioned FDP-controlling construc-

tion, in Blain et al. (2022) and Blain et al. (2023), the authors construct rejection sets with a high

number of true positives.

The first confidence bounds are found in Genovese and Wasserman (2006) and Meinshausen (2006),

although, in the latter, only for selection sets of the form {i ∈ Nm : pi ≤ s} where pi is the p-value

associated to the null hypothesis H0,i and s ∈ [0, 1] is a threshold. In Goeman and Solari (2011) the

authors re-wrote the generic construction of Genovese and Wasserman (2006) in terms of closed

testing (a framework first introduced for the FWER control by Marcus et al. (1976)), proposed several

practical constructions and sparked a new interest in multiple testing procedures based on confidence

bounds. This work was followed by a prolific series of works like Meijer et al. (2015) or Vesely et al.

(2023). In Blanchard et al. (2020), the authors introduce the new point of view of references families

to construct post hoc bounds, and show the links between this meta-technique and the closed testing

one, along with new bounds. Reference families are families of couples (Rk, ζk)k∈K where Rk is a

subset of hypotheses (called a region), and ζk an over-estimator of the number of null hypotheses

inside Rk , that is, of |Rk ∩H0|. From a statistical guarantee on the family, called the Joint Error Rate

(JER) control, one is able to build a post hoc bound, denoted V ∗
R in the remainder, by interpolation

(see Section 2.2 for all the details).

Following the reference family trail, in Durand et al. (2020), the authors introduce new reference

families with a special set-theoretic constraint that allows an efficient computation of the bound

V ∗
R(S) for a given, single selection set S. The constraint, named “forest structure”, is that two regions

of hypotheses Rk and Rk′ are either disjoint, or nested: Rk ∩ Rk′ ∈ {Rk, Rk′ ,∅}. This structure

arises when the object of study naturally presents different levels of hierarchy. For example, in

genomic studies, where each hypothesis tests the association of a Single Nucleotid Polymorphism

(SNP) with a given character, we can exploit the natural grouping of SNPs into genes or intergenic

regions, and then the grouping of genes into genomic pathways, or into chromosomes. In proteomic

studies, where the smallest unit is usually the peptide, we can exploit the natural grouping of peptides

into proteins, and the grouping of proteins into proteomic pathways. In brain imagery, known brain

anatomy can be used to build the regions.

The problem is that one often wants to compute V ∗
R on a whole path of selection sets (St)t∈N∗

m
, for

example the hypotheses attached to the t smallest p-values: St = {σ(1), . . . , σ(t)}, where σ is a

(random) permutation ordering the p-values: pσ(1) ≤ · · · ≤ pσ(m). Whereas the algorithm provided

in the aforementioned work (Durand et al., 2020, Algorithm 1), which is reproduced here (see ?) is

fast for a single evaluation, it is slow and inefficient to repeatedly call it to compute each V ∗
R(St).

If the St’s are nested, and growing by one, that is S1 ⊊ · · · ⊊ Sm and |St| = t, there is a way to

3

efficiently compute (V ∗
R(St))t∈Nm

by leveraging the nested structure.

This is the main contribution of the present paper: a new and fast algorithm (?) computing the

curve (V ∗
R(St))t∈Nm

for a nested path of selection sets, that is presented in Section 3.2. An additional

pruning algorithm, that can speed up computations both for the single-evaluation algorithm and

the new curve-evaluation algorithm, is also presented in Section 3.1. Notably, a detailed example

illustrating how the new algorithms work is provided in Section 3.3. In Section 2, all necessary

notation and vocabulary is re-introduced, most of it being the same as in Durand et al. (2020). In

Section 4, we discuss the current implementations of all the presented algorithms in the R (R Core

Team, 2024) package sanssouci (Neuvial et al., 2024), with an example code. A few numerical

experiments are presented in Section 5 to demonstrate the computation time gain. We reproduce

here, in Figure 1, the striking results of one of those experiments, where the combination of the two

new algorithms improves the computation time by a factor 33000. Finally, after some concluding

remarks in Section 6, the proofs of all results, including the proof that ? indeed computes correctly

the curve, are presented in Section 7.

2 Notation and reference family methodology

2.1 Multiple testing notation

As is usual in multiple testing theory, we consider a probability space (Ω,A,P), a model F on a

measurable space (X ,X), and data that is represented by a random variable X : (Ω,A)→ (X ,X)
with X ∼ P ∈ F, that is, the law of X is comprised in the model F.

Then we consider m ≥ 1 null hypotheses H0,1, . . . ,H0,m which formally are submodels, that

is subsets of F. The associated alternative hypotheses H1,1, . . . ,H1,m are submodels such that

H0,i ∩H1,i = ∅ for all i ∈ N∗
m. We denote byH0 = H0(P) (the dependence in P will be dropped

when there is no ambiguity) the set of all null hypotheses that are true, that is H0(P) = {i ∈
N∗
m : P ∈ H0,i}. In other words, H0,i is true if and only if i ∈ H0. For testing each H0,i, i ∈ N∗

m,

we have at hand a p-value pi = pi(X) (the dependence in X will be dropped when there is no

ambiguity) which is a random variable with the following property : if i ∈ H0, then the law of pi is

super-uniform, which is sometimes denoted L(pi) ⪰ U([0, 1]). This means that in such case, the

cumulative distribution function (cdf) of pi is always smaller than or equal to the cdf of a random

variable U ∼ U([0, 1]) :

∀x ∈ R, P (pi ≤ x) ≤ P (U ≤ x) = 0 ∨ (x ∧ 1). (3)

For every subset of hypotheses S ⊆ N∗
m, let V (S) = |S ∩H0|. If we think of S as a selection set of

hypotheses deemed significant, V (S) is then the number of false discoveries, or false positives, in S.

V (S) is our main object of interest and the quantity that we wish to over-estimate with confidence

upper bounds (see Equation (1) or the more formal Equation (4) below).

Finally let us consider the following toy example, that will re-appear slightly simplified in Section 5.

Example 2.1 (Gaussian one-sided). In this case we assume that X = (X1, . . . , Xm) is a Gaussian

vector and the null hypotheses refer to the nullity of the means in contrast to their positivity. That is,

formally, (X ,X) = (Rm,B (Rm)), P = {N (µ,Σ) : ∀j ∈ N∗
m, µj ≥ 0,Σ positive semidefinite}, for

each i ∈ N∗
m, H0,i = {N (µ,Σ) ∈ P : µi = 0} and H1,i = {N (µ,Σ) ∈ P : µi > 0}. Then we can

construct p-values by letting pi(X) = 1− Φ(Xi), where Φ denotes the cdf of N (0, 1).

4

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

Comp. time, scenario 3

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

Figure 1: Computation time in scenario 3 for the new fast algorithm versus the previous, naive

approach, in seconds (using a logarithmic scale)

5

2.2 Post hoc bounds with reference families

With the formalism introduced in last section, a confidence upper bound is a functional V̂ : X ×
(0, 1)→ (P(N∗

m)→ Nm) such that,

∀P ∈ P,∀X ∼ P, ∀α ∈ (0, 1), P
(
∀S ⊆ N∗

m, V (S) ≤ V̂ (X,α)(S)
)
≥ 1− α. (4)

In the remainder, the dependence in (X,α) will be dropped when there is no ambiguity and

V̂ (X,α)(·) will simply be written V̂ .

As said in the Introduction, many constructions, ultimately theoretically equivalent but differing by

the practical steps involved, exist, and in this paper we focus on the meta-construction of Blanchard

et al. (2020) based on reference families. A reference family is a finite family R = R(X,α) =
(Rk, ζk)k∈K with Rk ⊆ N∗

m, ζk ∈ {0, . . . , |Rk|} where everything (that is, K and all the Rk and ζk)

depends on (X,α) but the dependency is not explicitly written. The Rk are assumed all distinct

almost surely (see Remark 2.2).

The intuition of the concept of reference families is the following. The Rk’s are subsets, or regions,

of hypotheses, and the associated ζk’s are over-estimators of V (Rk). That is, building a reference

family amounts to building a collection of regions, that can be much smaller than all possible subsets

of hypotheses (note that |P(N∗
m)| = 2m is likely to be very large), for which we have a confidence

upper bound. This bound, holding only on the Rk’s in the first place, will then be extended to a

simultaneous confidence bound over all subsets S (in the sense of Equation (4)) by an interpolation

scheme explained below.

The statistical guarantee over the ζk’s, as over-estimators of V (Rk), is written in terms of the

following error criterion for a reference family, named Joint Error Rate (JER):

JER(R) = P (∃k ∈ K, |Rk ∩H0| > ζk) = P (∃k ∈ K, V (Rk) > ζk) . (5)

We say that the reference family R controls the JER if the following is true:

∀P ∈ P,∀X ∼ P, ∀α ∈ (0, 1), 1− JER(R(X,α)) = P (∀k ∈ K, V (Rk) ≤ ζk) ≥ 1− α. (6)

Note that Equation (6) is, as foretold, really similar to Equation (4) except that the uniform guarantee,

instead of being over all S ⊆ N∗
m, is only over all the Rk ⊆ N∗

m, k ∈ K, with K having cardinality

potentially much smaller than 2m. A “global” confidence bound is then derived from the JER-

controlling reference family with the following two steps. First let

A(R) = {A ⊆ N∗
m : ∀k ∈ K, |Rk ∩A| ≤ ζk} . (7)

The JER control says that, with high probability,H0 ∈ A(R). We then leverage this information by

interpolation, with the following construction:

V ∗
R(S) = max

A∈A(R)
|S ∩A|. (8)

By Proposition 2.1 of Blanchard et al. (2020), the JER control of the family in Equation (6) implies that

V ∗
R is indeed a confidence bound as required by Equation (4). The same Proposition also establishes

that V ∗
R optimally uses the information provided by the JER control of the reference family.

Note that, because of the maxA∈A(R), the computation of V ∗
R(S) is generally intractable (see Propo-

sition 2.2 of Blanchard et al. (2020)), but for specific structures of reference families, a polynomial

computation can be derived. This is the topic of Durand et al. (2020) and of the remainder of this

paper.

6

Remark 2.1. The specific computation of the Rk’s and the ζk’s such that Equation (6) holds is outside

the scope of the present paper, but different constructions can be found in Blanchard et al. (2020),

Durand et al. (2020), Blain et al. (2022) or Meah et al. (2024), for example.

Remark 2.2. Some reference family constructions can yield Rk = Rk′ for k ̸= k′, for example in

the setting of Meah et al. (2024) with discrete p-values. But in that scenario we can always prune

the duplicate and keep only one index so that k 7→ Rk is injective. We implicitly consider that this

operation is always done in practice and in the remainder of this article. Of course, if Rk = Rk′

with k ̸= k′, we keep the index with the lower value of ζ , that is we keep k̃ ∈ argminℓ∈{k,k′} ζℓ
(not doing so would change the bound defined by (8) and decrease its power in terms of type-II

error). Similarly, some constructions can yield empty regions, which can always be pruned without

changing the bound. This will also be assumed to be the case in the following. Finally, note that

the constraint that ζk ≤ |Rk| always hold no matter how ζk was computed, up to replacing ζk by

ζk ∧ |Rk|: it is clear on Equation (7) that this doesn’t change the bound.

2.3 Regions with a forest structure

The core concept of this section is to assume that the regions Rk’s of the reference family are what

we called in Durand et al. (2020) a forest structure, that is two regions are either disjoint or nested:

∀k, k′ ∈ K, Rk ∩Rk′ ∈ {Rk, Rk′ ,∅}. (9)

Representing the Rk’s with a directed graph, where there is an oriented edge Rk ← Rk′ if and only

if Rk ⊆ Rk′ and there is no Rk′′ such that Rk ⊊ Rk′′ ⊊ Rk′ gives a forest, hence the name. See

Example 2.2 and its representation in Figure 2.

We also need to introduce the notion of depth with the following function:

ϕ :

{
K → N∗

k 7→ 1 + |{k′ ∈ K : Rk ⊊ Rk′}| .
(10)

This definition matches the intuition of depth because we assumed the Rk are distinct, see Remark 2.2.

In all the remainder, H refers to the maximum depth in the structure: H = maxk∈K ϕ(k).

Example 2.2. Let m = 25, R1 = {1, . . . , 20}, R2 = {1, 2}, R3 = {3, . . . , 10}, R4 = {11, . . . , 20},
R5 = {5, . . . , 10}, R6 = {11, . . . , 16}, R7 = {17, . . . , 20}, R8 = {21, 22}, R9 = {22}. This is the

same example as Example 2 of Durand et al. (2020) and it is graphically depicted in Figure 2. The sets

R1, R8 are of depth 1; the sets R2, R3, R4, R9 are of depth 2; the sets R5, R6, R7 are of depth 3.

R1

R2 R3 R4

R5 R6 R7

R8

R9

Figure 2: The regions of Example 2.2.

Another tool of Durand et al. (2020) that will be used is its Lemma 2, that is the identification of R

with a set C ⊂
{
(i, j) ∈ (N∗

N)2 : i ≤ j
}

such that for (i, j), (i′, j′) ∈ C, {i, . . . , j} ∩ {i′, . . . , j′} ∈

7

{∅, {i, . . . , j}, {i′, . . . j′}}. With this identification, each Rk = R(i,j) can be written as Pi:j =⋃
i≤n≤j Pn where (Pn)1≤n≤N is a partition of N∗

m. The Pn’s were called atoms in Durand et al.

(2020) because they have the thinnest granularity in the structure, but to continue the analogy with

graphs, forests and trees, they can also be called leafs. See Example 2.3 for a concrete example.

Example 2.3 (Continuation of Example 2.2). For the reference family given in Example 2.2, a partition

of atoms is given by P1 = R2, P2 = R3 \R5, P3 = R5, P4 = R6, P5 = R7, P6 = R8 \R9, P7 = R9,

P8 = N∗
m \ {R1 ∪ R8}. Then R1 = P1:5, R3 = P2:3, R4 = P4:5 and R8 = P6:7. Note that not all

atoms are regions of the family. Those new labels are graphically depicted in Figure 3. The nodes

that correspond to atoms that are not in the family are depicted with a dashed circle, and all atoms

are depicted in gray. This is the same example as Example 3 of Durand et al. (2020).

P1:5

P1 P2:3 P4:5

P2 P3 P4 P5

P6:7

P6 P7

P8

Figure 3: The regions of Example 2.2 but with the labels of Example 2.3.

When all leaves are regions of the family, it is said that the family is complete. If this is not the

case, the family can easily be completed by adding the missing leaves (and using their cardinality as

associated ζ) without changing the value V ∗
R. See Definition 2, Lemma 6 and Algorithm 2 of Durand

et al. (2020) for the details.

Durand et al. (2020) also proved in their Theorem 1 that:

V ∗
R(S) = min

Q⊆K

∑
k′∈Q

ζk′ ∧ |S ∩Rk′ |+

∣∣∣∣∣∣S \
⋃
k′∈Q

Rk′

∣∣∣∣∣∣
 (11)

and, even better, in their Corollary 1 (iii) that:

V ∗
R(S) = min

Q∈P

∑
k′∈Q

ζk′ ∧ |S ∩Rk′ |, (12)

provided that the family is complete. Here, P ⊆ P(K) is the set of subsets of K that realize a

partition, that is, the set of elements Q ⊆ K such that the Rk , k ∈ Q, form a partition of N∗
m. So the

minimum in Equation (12) is over way less elements than in Equation (11).

Finally, that paper provides a polynomial algorithm to V ∗
R(S) for a single S ⊆ N∗

m, which we

reproduce here in ?. The family is assumed complete, otherwise the first step would be to complete it.

In the original paper, Kh
used to designate the elements of K at depth h plus the atoms at depth ≤ h.

Actually, including those atoms is not needed for this algorithm to perform exactly the same, and

produces redundant computations. If we don’t include them, the only difference is that sometimes

Succk can be empty, in which case we simply let newV eck = ζk ∧ |S ∩Rk|. Thus, here in this paper,

we define Kh
as only the elements of K at depth h (the previous intricate definition may still be

necessary for the proof of Theorem 1 of Durand et al. (2020)): Kh = {(i, j) ∈ K : ϕ(i, j) = h}, h ≥ 1.

8

This is the only deviation from the notation of Durand et al. (2020). Finally note that in the ongoing

analogy with graph theory, the elements of K1
are the roots of the different trees making up the

forest.

Algorithm 1 Computation of a given V ∗
R(S) with a complete family

1: procedure Vstar(S, R = (Rk, ζk)k∈K with R complete)

2: H ← maxk∈K ϕ(k) ▷ maximum depth

3: V ec← (ζk ∧ |S ∩Rk|)k∈KH ▷ initialization

4: for h = H − 1, . . . , 1 do
5: Kh ← {k ∈ K : ϕ(k) = h}
6: newV ec← (0)k∈Kh

7: for k ∈ Kh do
8: Succk ← {k′ ∈ Kh+1 : Rk′ ⊆ Rk}
9: if Succk = ∅ then

10: newV eck ← ζk ∧ |S ∩Rk|
11: else
12: newV eck ← min

(
ζk ∧ |S ∩Rk|,

∑
k′∈Succk V eck′

)
13: end if
14: end for
15: V ec← newV ec
16: end for
17: return

∑
k∈K1 V eck

18: end procedure

A step by step description of ? is provided at the end of Section 3 and in the Figure 9 of Durand et al.

(2020).

The computation time of the algorithm is in O(|K||S|), which is fast for a single evaluation, but

calling it repeatedly on a path of selection sets (St)t∈N∗
m

has complexity O(|K|m2), which is not

desirable and makes computations difficult in practice, hence the need for a new, faster algorithm.

� Tip 1

In the practical implementation of this algorithm (and of the following ?), V ec and newV ec
are always of size N (the number of leaves) instead of the cardinality of Kh

. And the sum∑
k′∈Succk V eck′ is really easy to compute: if Rk = R(i0,ip−1) =

⋃p
j=1R(ij−1,ij−1) =⋃

i0≤n≤ip−1 Pn ∈ Kh
for some p ≥ 2, a strictly increasing sequence (i0, . . . , ip) and

R(ij−1,ij−1) ∈ Kh+1
for all 1 ≤ j ≤ p, then we simply sum V ec over the indices from i0

to ip−1. After that, the computed quantity is set in newV ec at index i0. So actually computing

Succk is not needed and not done.

Furthermore, computing |S∩Rk| for each k is not necessary, it is sufficient to compute |S∩Pn|
for each leaf Pn, which can be done in O(N |S|).
By the two previous points, we can actually refine the complexity result of ?: it is in O(N |S|+
|K|) ≤ O(|K||S|) because N ≤ |K| for a complete forest, and if the forest is not complete, the

Algorithm 2 of Durand et al. (2020) constructs a partition (Pn)1≤n≤N such that N ≤ |K|, and

so the cardinality of the completed forest is ≤ 2|K|.

Speaking of complexity, we have the following result regarding m, |K| and N :

Proposition 2.1. For any reference family (Rk, ζk)k∈K with a forest structure, we have N ≤ m,

9

H ≤ N , |K| ≤ 2N − 1 and these three bounds can be achieved simultaneously. In particular,
|K| ≤ 2m− 1.

The proof of Proposition 2.1 is given in Section 7.3.

3 New algorithms

3.1 Pruning the forest

We remark the simple fact that if, for example, (1, 1), (2, 2), (1, 2) ∈ K, and ζ(1,2) ≥ ζ(1,1) + ζ(2,2),
then R(1,2) never contributes to the computation of any V ∗

R(S) and it could just be removed from R.

We now formalize and prove this pruning scheme.

Definition 3.1 (Pruning). We define by Kpr
(K pruned) the set of elements of K from which we

removed all (i, i′) such that there exists p ≥ 2 and integers i1, . . . , ip−1 such that, when setting

i0 = i and ip = i′ + 1, the sequence (i0, . . . , ip) is strictly increasing, (ij−1, ij − 1) ∈ K for all

1 ≤ j ≤ p and finally ζ(i,i′) = ζ(i0,ip−1) ≥
∑p

j=1 ζ(ij−1,ij−1).

An important note is that for a removed (i, i′) ∈ K\Kpr
, we can always choose the indices i1, . . . , ip−1

such that actually (ij , ij+1 − 1) ∈ Kpr
and not only K, because if (ij , ij+1 − 1) ∈ K \ Kpr

it can

itself be fragmented, and this decreasing recursion eventually ends (the later possible being at the

atoms of the forest structure). Also note that removing elements from K does not alter the fact that

we have at hand a forest structure, that is, the reference family defined by Rpr = (Rk, ζk)k∈Kpr has

a forest structure. Because pruning a forest structure does not touch the atoms, note finally that if K
is complete then so is Kpr

.

The following proposition states that pruning the forest does not alter the bound.

Proposition 3.1. For any S ⊆ N∗
m, V ∗

R(S) = V ∗
Rpr(S).

The proof of Proposition 3.1 is given in Section 7.1.1.

This gives a practical way to speed up computations by first pruning the family before computing

any V ∗
R(S), because Kpr

is smaller than K, and by the above Proposition there is no theoretical loss

in doing so.

Furthermore, pruning can be done really simply by following ? for S = N∗
m, and pruning when

appropriate. This gives the following ?, assuming, for simplicity, that the family is complete. Note

that the only differences between ? and ? are the pruning step and ζk replacing ζk∧|S∩Rk|, because

ζk ≤ |Rk| and S = N∗
m here, so ζk ∧ |N∗

m ∩Rk| = ζk.

Also note that the algorithm returns V ∗
R(N∗

m) as a by-product. The following proposition states that

? indeed produces the pruned region as in Definition 3.1.

Proposition 3.2. The final L returned by ? is equal to Kpr: L = Kpr.

The proof of Proposition 3.2 is given in Section 7.1.2.

� Tip 2

We saw that ? has O(N |S|+ |K|) complexity, the N |S| term coming from the evaluation of

the |S ∩Pi| terms, 1 ≤ i ≤ N . Here, |S ∩Pi| = |N∗
m ∩Pi| = |Pi| can be accessed in O(1), and

N ≤ |K| for a complete family, so ? simply has O(|K|) complexity.

10

Algorithm 2 Pruning of a complete R

1: procedure Pruning(R = (Rk, ζk)k∈K with R complete)

2: L ← K
3: H ← maxk∈K ϕ(k) ▷ maximum depth

4: for h = H − 1, . . . , 1 do
5: Kh ← {k ∈ K : ϕ(k) = h}
6: newV ec← (0)k∈Kh

7: for k ∈ Kh do
8: Succk ← {k′ ∈ Kh+1 : Rk′ ⊆ Rk}
9: if Succk = ∅ then

10: newV eck ← ζk
11: else
12: if ζk ≥

∑
k′∈Succk V eck′ then

13: L ← L \ {k} ▷ pruning of the region indexed by k
14: end if
15: newV eck ← min

(
ζk,
∑

k′∈Succk V eck′
)

16: end if
17: end for
18: V ec← newV ec
19: end for
20: return (L,

∑
k∈K1 V eck)

21: end procedure

3.2 Fast algorithm to compute a curve of confidence bounds on a path of selection
sets

Let (i1, . . . , im) a permutation of N∗
m, eventually random, and, for all t ∈ N∗

m, let St = {i1, . . . , it}
and S0 = ∅. For example, (i1, . . . , im) can be the permutation ordering the p-values in increasing

order and in that case St becomes the set of indices of the t smallest p-values. Assume that we want

to compute all V ∗
R(St) for all t ∈ {0, . . . ,m}, this is what we call the curve of confidence bounds

indexed by (i1, . . . , im). Applying ? to compute V ∗
R(St) for a given t has complexity O(|K|t), so

using it to sequentially compute the full curve has complexity O (|K|
∑m

t=0 t) = O
(
|K|m2

)
. In this

section, we present a new algorithm that computes the curve with a O (|K|m) complexity. The

algorithm will need that R is complete, so if that is not the case we first need to complete R following

the Algorithm 2 of Durand et al. (2020), which has a O(|K|m) complexity. In the remainder of this

section we assume that R is complete.

We first recall and introduce some notation. Recall that ϕ is the depth function inside of R, that

P ⊆ P(K) is the set of subsets of K that realize a partition, recall the important result stated by

Equation (12), and that Kh = {k ∈ K : ϕ(k) = h} for all 1 ≤ h ≤ H where H = maxk∈K ϕ(k). For

any t ∈ N∗
m and 1 ≤ h ≤ H , we denote by k(t,h) the element of Kh

such that it ∈ Rk(t,h) if it exists,

and we denote by hmax(t) the highest h such that k(t,h) exists.

Example 3.1 (Continuation of Example 2.2 and Example 2.3). Assume that the reference family of

Example 2.2 has been labeled as in Example 2.3 and completed. Let (i1, . . . , i25) such that i1 = 7,

i2 = 1 and i3 = 24. Then for t = 1, k(t,1) = (1, 5), k(t,2) = (2, 3), k(t,3) = (3, 3) and hmax(t) =
H = 3. For t = 2, k(t,1) = (1, 5), k(t,2) = (1, 1), k(t,3) does not exist and hmax(t) = 2. For t = 3,

k(t,1) = (8, 8), k(t,2) does not exist and hmax(t) = 1.

We will now present the new algorithm and the proof that it computes the curve (V ∗
R(St))t∈Nm .

We present two versions of the algorithm (strictly equivalent): one very formal (?), to introduce

11

additional notation used in the proof of Theorem 3.1, and, later, a simpler version that is the one

actually implemented (?). Recall that a detailed illustration of the steps of the algorithms will be

provided in Section 3.3.

In addition to the computation of all V ∗
R(St), ? also computes partitions Pt

that realize the minimum

in (12) for V ∗
R(St). The initialization of Pt

has to be done carefully, for that we let K−
0 = {k ∈ K :

ζk = 0} and

E =
{
k ∈ K−

0 : ∀k′ ∈ K−
0 , Rk ⊆ Rk′ ⇒ k′ = k

}
, (13)

F =
{
(i, i), 1 ≤ i ≤ N : ∀k ∈ K−

0 , R(i,i) ̸⊆ Rk

}
, (14)

and finally

P0 = E ∪ F. (15)

E is the set of indices of the maximal elements k such that ζk = 0, F is the set of indices of all leaves

that are not a subset of a region indexed by E. P0
is the disjoint union of the two.

The core idea of the algorithm is that, as we increase t and add new hypotheses in St, we inflate a

counter ηtk for each region Rk , by 1 if it ∈ Rk (line 12), by 0 if not (lines 23 and 27), but only until the

counter reaches ζk (line 13). After this point, the hypotheses in Rk don’t contribute to V ∗
R(St), we

keep track of those hypotheses with K−
t (line 6), so as soon as ηt

k(t,h)
= ζk we update K−

t by adding

k(t,h) (line 18) to it and we update Pt
accordingly (line 17).

We will see in the following Theorem 3.1 how this algorithm allows to compute V ∗
R(St). We first

need a final notation. Let

Kt = {k ∈ K : ∃k′ ∈ Pt : Rk′ ⊆ Rk}.

The elements of Kt index the regions of the forest that “are above’ ’ the regions of the current

partition-realizing Pt
. In particular, we always have, for any t ∈ Nm, K1 ⊆ Kt and Pt ⊆ Kt. We

can also remark that the sequence (Kt)0≤t≤m is non-increasing for the inclusion relation, and that

K0 = K.

Theorem 3.1 (Fast curve computation). Assume that R is complete in the sense of Section 2.3.

Let any t ∈ Nm. Then, Pt ∈ P, and for all k ∈ Kt, we have

V ∗
R(St ∩Rk) = ηtk (16)

and
V ∗
R(St ∩Rk) =

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |. (17)

Furthermore,
V ∗
R(St) =

∑
k∈Pt

ζk ∧ |St ∩Rk| =
∑
k∈K1

ηtk. (18)

The proof of this Theorem is given in Section 7.2. The first equality of Equation (18) states that the

minimum in (12) is indeed realized on the partition Pt
, and the last equality of the same Equation is

the basis of the following light corollary.

Corollary 3.1 (Easy computation). Assume that R is complete in the sense of Section 2.3.

For t ∈ {0, . . . ,m − 1}, V ∗
R(St+1) = V ∗

R(St) if it+1 ∈
⋃

k∈K−
t
Rk, and V ∗

R(St+1) = V ∗
R(St) + 1 if

not.

12

Algorithm 3 Formal computation of (V ∗
R(St))0≤t≤m with a complete family

1: procedure Curve(R = (Rk, ζk)k∈K with R complete, path (St)1≤t≤m with St = {i1, . . . , it})
2: P0 ← E ∪ F ▷ see (13) and (14)

3: K−
0 ← {k ∈ K : ζk = 0}

4: η0k ← 0 for all k ∈ K
5: for t = 1, . . . ,m do
6: if it ∈

⋃
κ∈K−

t−1
Rκ then

7: Pt ← Pt−1

8: K−
t ← K

−
t−1

9: ηtk ← ηt−1
k for all k ∈ K

10: else
11: for h = 1, . . . , hmax(t) do
12: ηt

k(t,h)
← ηt−1

k(t,h)
+ 1

13: if ηt
k(t,h)

< ζk then
14: Pass

15: else
16: hft ← h ▷ final depth

17: Pt ←
(
Pt−1 \ {k ∈ Pt−1 : Rk ⊆ R

k(t,h
f
t)
}
)
∪ {k(t,h

f
t)}

18: K−
t ← K

−
t−1 ∪ {k(t,h

f
t)}

19: Break the loop

20: end if
21: end for
22: if the loop has been broken then
23: ηtk ← ηt−1

k for all k ∈ K not visited during the loop, that is all k ̸∈ {k(t,h), 1 ≤
h ≤ hft }

24: else
25: Pt ← Pt−1

26: K−
t ← K

−
t−1

27: ηtk ← ηt−1
k for all k ∈ K not visited during the loop, that is all k ̸∈ {k(t,h), 1 ≤

h ≤ hmax(t)}
28: end if
29: end if
30: end for
31: return Pt, ηtk for all t = 1, . . . ,m and k ∈ K
32: end procedure

Proof. From (18), V ∗
R(St+1) =

∑
k∈K1 η

t+1
k and V ∗

R(St) =
∑

k∈K1 ηtk. If it+1 ∈
⋃

k∈K−
t
Rk, ηt+1

k =

ηtk for all k ∈ K1
. If not, ηt+1

k = ηtk for all k ∈ K1
, k ̸= k(t+1,1)

, whereas for k = k(t+1,1)
,

ηt+1
k = ηtk + 1.

We note that, from Theorem 3.1 and Corollary 3.1, if one is only interested in the computation of the

curve (V ∗
R(St))1≤t≤m, tracking Pt

is actually useless, what is important is to track and update K−
t

correctly. Hence the simpler, alternative ?. Note that ? is less formal than ?: as in ? and ?, it recycles

notation (mimicking the actual code implementation) so the t subscript or superscript is dropped

from all K−
t and ηtk. In ?, the notation Vt is actually equal to V ∗

R(St) by Corollary 3.1.

Stocking, for each it, the indices k such that it ∈ Rk , is done by scanning the forest structure so it has

complexity in O(|K|). Once this information is available, finding k(t,h) and updatingK−
can be done

13

Algorithm 4 Practical computation of (V ∗
R(St))0≤t≤m

1: procedure Curve(R = (Rk, ζk)k∈K with R complete, path (St)1≤t≤m with St = {i1, . . . , it})
2: V0 ← 0
3: K− ← {k ∈ K : ζk = 0}
4: ηk ← 0 for all k ∈ K
5: for t = 1, . . . ,m do
6: if it ∈

⋃
κ∈K− Rκ then

7: Vt ← Vt−1

8: else
9: for h = 1, . . . , hmax(t) do

10: find k(t,h) ∈ Kh
such that it ∈ Rk(t,h)

11: ηk(t,h) ← ηk(t,h) + 1
12: if ηk(t,h) < ζk then
13: pass

14: else
15: K− ← K− ∪ {k(t,h)}
16: break the loop

17: end if
18: end for
19: Vt ← Vt−1 + 1
20: end if
21: end for
22: return (Vt)1≤t≤m

23: end procedure

in O(1). Then each step t of the for loop consists in two successive scans of the k(t,h), 1 ≤ h ≤ H ,

the first to check if it ∈
⋃

k∈K− Rk, and the second to update the ηk(t,h) if it ̸∈
⋃

k∈K− Rk. So each

step has complexity in O(H) and finally the complexity of ? is in O(Hm+ |K|) ≤ O(|K|m), and

even only O(Hm) after the first call if the necessary information has been stocked.

3.3 Illustration on a detailed example

In this section, we follow ? during its first steps in a detailed fashion.

We keep the structure of Example 2.2 and Example 2.3. Recall that m = 25, P1:5 = R1 = {1, . . . , 20},
P1 = R2 = {1, 2}, P2:3 = R3 = {3, . . . , 10}, P4:5 = R4 = {11, . . . , 20}, P2 = {3, 4}, P3 = R5 =
{5, . . . , 10}, P4 = R6 = {11, . . . , 16}, P5 = R7 = {17, . . . , 20}, P6:7 = R8 = {21, 22}, P6 = {21},
P7 = R9 = {22} and P8 = {23, 24, 25}.

Now assume that we have the following values for the ζk’s: ζ(1,5) = 5, ζ(1,1) = 2, ζ(2,3) = 0,

ζ(3,3) = 0, ζ(4,5) = 4, ζ(4,4) = 2, ζ(5,5) = 3, ζ(6,7) = 2, ζ(7,7) = 0. Because P2, P6 and P8 come from

the completion operation (see Section 2.3), we also have ζ(2,2) = |P2| = 2, ζ(6,6) = |P6| = 1 and

ζ(8,8) = |P8| = 3. Theses values are summarized in Figure 4.

We want to compute the curve (V ∗
R (St))1≤t≤9 with St = {i1, . . . , it} and i1 = 11, i2 = 17, i3 = 12,

i4 = 13, i5 = 18, i6 = 24, i7 = 19, i8 = 22 and i9 = 5.

First, we apply ? to the family. This results in pruning P6:7 (and only this region), because 2 =
ζ(6,7) ≥ ζ(6,6) + ζ(7,7) = 1 + 0. This gives Figure 5.

Now we initialize ?, that is we let t = 0. Because ζ(2,3) = ζ(3,3) = ζ(7,7) = 0, (2, 3), (3, 3) and (7, 7)

are added to K−
t : K−

0 = {(2, 3), (3, 3), (7, 7)}. We define P0
according to (13), (14) and (15). Here,

14

P1:5

ζ(1,5) = 5
P6:7

ζ(6,7) = 2
P8

ζ(8,8) = 3

P1

ζ(1,1) = 2
P2:3

ζ(2,3) = 0
P4:5

ζ(4,5) = 4
P6

ζ(6,6) = 1
P7

ζ(7,7) = 0

P2

ζ(2,2) = 2
P3

ζ(3,3) = 0
P4

ζ(4,4) = 2
P5

ζ(5,5) = 3

Figure 4: The regions of Example 2.2 with the ζk values.

P1:5

ζ(1,5) = 5
P8

ζ(8,8) = 3

P1

ζ(1,1) = 2
P2:3

ζ(2,3) = 0
P4:5

ζ(4,5) = 4

P6

ζ(6,6) = 1
P7

ζ(7,7) = 0

P2

ζ(2,2) = 2
P3

ζ(3,3) = 0
P4

ζ(4,4) = 2
P5

ζ(5,5) = 3

Figure 5: The regions of Example 2.2 after pruning.

15

E = {(2, 3), (7, 7)} and so F = {(1, 1), (4, 4), (5, 5), (6, 6), (8, 8)} and P0 = E ∪ F . Furthermore,

all ηtk are set to 0. The initial state of ? is shown in Figure 6, with the elements of K−
t being in red to

show that they will not contribute to the computations, and the elements of Pt
as squares.

P1:5

ζ(1,5) = 5
η0(1,5) = 0

P8

ζ(8,8) = 3
η0(8,8) = 0

P1

ζ(1,1) = 2
η0(1,1) = 0

P2:3

ζ(2,3) = 0
η0(2,3) = 0

P4:5

ζ(4,5) = 4
η0(4,5) = 0

P6

ζ(6,6) = 1
η0(6,6) = 0

P7

ζ(7,7) = 0
η0(7,7) = 0

P2

ζ(2,2) = 2
η0(2,2) = 0

P3

ζ(3,3) = 0
η0(3,3) = 0

P4

ζ(4,4) = 2
η0(4,4) = 0

P5

ζ(5,5) = 3
η0(5,5) = 0

Figure 6: The regions of Example 2.2 at t = 0 in ?.

We move on to t = 1, with i1 = 11. i1 ∈ P4 ⊆ P4:5 ⊆ P1:5. The appropriate ηtk are increased by

one, and by (18) we have V ∗
R(S1) = η1(1,5) + η1(6,6) + η1(7,7) + η1(8,8) = 1 + 0 + 0 + 0 = 1. The state

of the step is summarized in Figure 7.

P1:5

ζ(1,5) = 5
η1(1,5) = 1

P8

ζ(8,8) = 3
η1(8,8) = 0

P1

ζ(1,1) = 2
η1(1,1) = 0

P2:3

ζ(2,3) = 0
η1(2,3) = 0

P4:5

ζ(4,5) = 4
η1(4,5) = 1

P6

ζ(6,6) = 1
η1(6,6) = 0

P7

ζ(7,7) = 0
η1(7,7) = 0

P2

ζ(2,2) = 2
η1(2,2) = 0

P3

ζ(3,3) = 0
η1(3,3) = 0

P4

ζ(4,4) = 2
η1(4,4) = 1

P5

ζ(5,5) = 3
η1(5,5) = 0

Figure 7: The regions of Example 2.2 at t = 1 in ?.

We move on to t = 2, with i2 = 17. i1 ∈ P5 ⊆ P4:5 ⊆ P1:5. The appropriate ηtk are increased by

one, and by (18) we have V ∗
R(S2) = 2. The state of the step is summarized in Figure 8.

We move on to t = 3, with i3 = 12. i3 ∈ P4 ⊆ P4:5 ⊆ P1:5. The appropriate ηtk are increased

16

P1:5

ζ(1,5) = 5
η2(1,5) = 2

P8

ζ(8,8) = 3
η2(8,8) = 0

P1

ζ(1,1) = 2
η2(1,1) = 0

P2:3

ζ(2,3) = 0
η2(2,3) = 0

P4:5

ζ(4,5) = 4
η2(4,5) = 2

P6

ζ(6,6) = 1
η2(6,6) = 0

P7

ζ(7,7) = 0
η2(7,7) = 0

P2

ζ(2,2) = 2
η2(2,2) = 0

P3

ζ(3,3) = 0
η2(3,3) = 0

P4

ζ(4,4) = 2
η2(4,4) = 1

P5

ζ(5,5) = 3
η2(5,5) = 1

Figure 8: The regions of Example 2.2 at t = 2 in ?.

by one, and we notice that η3(4,4) = 2 = ζ(4,4). So P4 will stop contributing, we add it to K−
t :

K−
3 = {(2, 3), (3, 3), (4, 4), (7, 7)}. Following line 17 of ?, Pt

does not change (we remove then add

(4, 4) from it) and P3 = P0
. By (18), we have V ∗

R(S3) = 3. The state of the step is summarized in

Figure 9, with P4 now also in red.

P1:5

ζ(1,5) = 5
η3(1,5) = 3

P8

ζ(8,8) = 3
η3(8,8) = 0

P1

ζ(1,1) = 2
η3(1,1) = 0

P2:3

ζ(2,3) = 0
η3(2,3) = 0

P4:5

ζ(4,5) = 4
η3(4,5) = 3

P6

ζ(6,6) = 1
η3(6,6) = 0

P7

ζ(7,7) = 0
η3(7,7) = 0

P2

ζ(2,2) = 2
η3(2,2) = 0

P3

ζ(3,3) = 0
η3(3,3) = 0

P4

ζ(4,4) = 2
η3(4,4) = 2

P5

ζ(5,5) = 3
η3(5,5) = 1

Figure 9: The regions of Example 2.2 at t = 3 in ?.

We move on to t = 4, with i4 = 13. i4 ∈ P4 ∈
⋃

k∈K−
3
Rk. No ηtk is increased (see line 9 of ?), and

by (18), we have V ∗
R(S4) = 3.

We move on to t = 5, with i5 = 18. i5 ∈ P5 ⊆ P4:5 ⊆ P1:5. We first increase ηt(1,5): η
5
(1,5) =

4 < ζ(1,5), then ηt(4,5): η
5
(4,5) = 4, and we stop there because η5(4,5) = 4 = ζ(4,5). P4:5 will stop

contributing, we add it to K−
t : K−

5 = {(2, 3), (4, 5), (3, 3), (4, 4), (7, 7)}. We also add (4, 5) and

17

remove (4, 4) and (5, 5) from Pt
: P5 = {(1, 1), (2, 3), (4, 5), (6, 6), (7, 7), (8, 8)}. Note that ηt(5,5) is

not updated because we stopped the loop before, see line 23 of ?. By (18), we have V ∗
R(S5) = 4. The

state of the step is summarized in Figure 10, with P4:5 now also in red.

P1:5

ζ(1,5) = 5
η5(1,5) = 4

P8

ζ(8,8) = 3
η5(8,8) = 0

P1

ζ(1,1) = 2
η5(1,1) = 0

P2:3

ζ(2,3) = 0
η5(2,3) = 0

P4:5

ζ(4,5) = 4
η5(4,5) = 4

P6

ζ(6,6) = 1
η5(6,6) = 0

P7

ζ(7,7) = 0
η5(7,7) = 0

P2

ζ(2,2) = 2
η5(2,2) = 0

P3

ζ(3,3) = 0
η5(3,3) = 0

P4

ζ(4,4) = 2
η5(4,4) = 2

P5

ζ(5,5) = 3
η5(5,5) = 1

Figure 10: The regions of Example 2.2 at t = 5 in ?.

We move on to t = 6, with i6 = 24. i6 ∈ P8. The appropriate ηtk is increased by one: η6(8,8) = 1 <

ζ(8,8), and by (18) we have V ∗
R(S6) = η6(1,5) + η6(6,6) + η6(7,7) + η6(8,8) = 4+ 0 + 0 + 1 = 5. The state

of the step is summarized in Figure 11.

P1:5

ζ(1,5) = 5
η6(1,5) = 4

P8

ζ(8,8) = 3
η6(8,8) = 1

P1

ζ(1,1) = 2
η6(1,1) = 0

P2:3

ζ(2,3) = 0
η6(2,3) = 0

P4:5

ζ(4,5) = 4
η6(4,5) = 4

P6

ζ(6,6) = 1
η6(6,6) = 0

P7

ζ(7,7) = 0
η6(7,7) = 0

P2

ζ(2,2) = 2
η6(2,2) = 0

P3

ζ(3,3) = 0
η6(3,3) = 0

P4

ζ(4,4) = 2
η6(4,4) = 2

P5

ζ(5,5) = 3
η6(5,5) = 1

Figure 11: The regions of Example 2.2 at t = 6 in ?.

We move on to the remaining steps. i7 = 19 ∈ P4:5, i8 = 22 ∈ P7 and i9 = 5 ∈ P2:3 are all

in

⋃
k∈K−

6
Rk so no ηtk is increased at their step (see line 9 of ?), and by (18), we have V ∗

R(S7) =

V ∗
R(S8) = V ∗

R(S9) = 5.

18

4 Implementation

All algorithms discussed in this manuscript are already implemented in the R (R Core Team, 2024)

package sanssouci (Neuvial et al., 2024) which is available on GitHub (see the References for

the link) and is dedicated to the computation of confidence bounds for the number of false pos-

itives. It also hosts the implementation of the methods described in Blanchard et al. (2020) and

Enjalbert-Courrech and Neuvial (2022). ? is implemented as the V.star function, ? is implemented

as the pruning function, and ? is implemented as the curve.V.star.forest.fast function

(whereas the curve.V.star.forest.naive function just repeatedly calls V.star). Note that

the pruning function has a delete.gaps option that speeds up the computation even more by

removing unnecessary gaps introduced in the data structure by the pruning operation, those gaps

being due to the specific structure that is used to store the information of K.

Speaking of the data structure, we briefly describe it, with an example. We represent (Rk)k∈K by

two lists, C and leaf_list. leaf_list is a list of vectors, where leaf_list[[i]] is the vector

listing the hypotheses in the atom Pi. C is a list of lists. For 1 ≤ h ≤ H , C[[h]] lists the regions

at depth h, using the index bounds of the atoms they are composed of. That is, the elements of

the list C[[h]] are vectors of size two, and if there is k, i and j such that C[[h]][[k]] = c(i,
j), it means that (i, j) ∈ K, or in other words that R(i,j) = Pi:j is one of the regions, and that

ϕ((i, j)) = h.

Example 4.1 (Implementation of Example 2.3). For the reference family given in Example 2.2 and

completed in Example 2.3, H = 3. For h = 1, we have C[[1]][[1]] = c(1, 5), C[[1]][[2]]
= c(6, 7), C[[1]][[3]] = c(8, 8). For h = 2, we have C[[2]][[1]] = c(1, 1),

C[[2]][[2]] = c(2, 3), C[[2]][[3]] = c(4, 5), C[[2]][[4]] = c(6, 6), C[[2]][[5]]
= c(7, 7). For h = 3, we have C[[3]][[1]] = c(2, 2), C[[3]][[2]] = c(3, 3),

C[[3]][[3]] = c(4, 4), C[[3]][[4]] = c(5, 5).

And then for the atoms, we have leaf_list[[1]] = c(1, 2), leaf_list[[2]] = c(3, 4),

leaf_list[[3]] = c(5, 6, 7, 8, 9, 10), leaf_list[[4]] = c(11, 12, 13, 14, 15,
16), leaf_list[[5]] = c(17, 18, 19, 20), leaf_list[[6]] = 21, leaf_list[[7]] =
22 and finally leaf_list[[8]] = c(23, 24, 25).

\ Caution 1

We emphasize that the 1D structure of the hypotheses has to be respected by the user as the

current implementation implicitly uses it: that is, P1 has to contain the hypotheses labeled

1, 2, . . . , p, P2 has to contain the hypotheses labeled p+1, . . ., and so on. Also, the hypotheses

have to be in increasing order: leaf_list[[1]] has to be equal to c(1, 2, 3, ..., p)
and not, say, c(2, 1, 3, ..., p).

� Tip 3

We see that the current implementation requires to provide a partition (Pn)1≤n≤N of leaves

compatible with the reference family. So, in a way, we always provide a complete family.

However, not all c(i,i) have to be in C for the various algorithms implemented to function

properly. It is not needed for the implementations of ? and ? given that, as stated in Tip 1, they

start by computing |S ∩Pn| for each leaf Pn anyway. Having a complete C is not needed either

for ?. Indeed, if Rk is a region such that ζk = |Rk|, the condition of line 12 of ? is always true,

except for the last element of Rk that is added to St. At that point, because the elements of Rk

have been exhausted, Rk won’t ever be visited again, so adding it to K−
is irrelevant. In the

19

end, tracking Rk and ηk for such k was not necessary in the first place. Furthermore, if the

implementation does not find k(t,h) (see line 10), it simply pass to the next iteration of the for
loop.

The functions dyadic.from.leaf_list, dyadic.from.window.size, and dyadic.from.height
return the appropriate data structure to represent a K that can be described as a dyadic tree, based

on some entry parameters that can be inferred from the names of the functions. As said in Tip 3, the

completion of C given leaf_list is not necessary, but can be done by the forest.completion
function. Finally, the ζk’s are computed as in Durand et al. (2020) by the zetas.tree function with

method=zeta.DKWM. Using method=zeta.trivial just yields ζk = |Rk|.

The following R snippet constructs the family of Example 2.2, draws uniform p-values p1, . . . , p25,

computes the ζk’s with method=zeta.trivial, completes the family with forest.completion
to get the family of Example 2.3, allowing to verify the claim of Example 4.1, prunes it with pruning
(which prunes everything except the leaves because of zeta.trivial), and finally computes the

curve of confidence bounds on the pathSt = {σ(1), . . . , σ(t)}, using both the pruned and non-pruned

complete family, where σ is a permutation ordering the p-values, using the fast implementation

curve.V.star.forest.fast.

library(sanssouci)

leaf_list <- list(c(1, 2),
c(3, 4),
c(5, 6, 7, 8, 9, 10),
c(11, 12, 13, 14, 15, 16),
c(17, 18, 19, 20),
21,
22,
c(23, 24, 25))

C <- list(list(c(1, 5), c(6,7)),
list(c(1, 1), c(2, 3), c(4, 5), c(7, 7)),
list(c(3, 3), c(4, 4), c(5, 5)))

pvalues <- runif(25)
o <- order(pvalues)
ZL <- zetas.tree(C, leaf_list, zeta.trivial, pvalues, alpha = 0.05)
complete.res <- forest.completion(C, ZL, leaf_list)
curve.V.star.forest.fast(o, complete.res$C, complete.res$ZL, leaf_list)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

pruning.res <- pruning(complete.res$C, complete.res$ZL, leaf_list, delete.gaps = TRUE)
curve.V.star.forest.fast(o, pruning.res$C, pruning.res$ZL, leaf_list)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

5 Numerical experiments

In this Section, we present some numerical experiments aiming to demonstrate the impact of the

pruning of ? (using the delete.gaps option mentioned in Section 4) and of the fast ?, in terms

of computation time, compared to the only previously available method to compute a curve of

confidence bounds. As mentioned in Section 2.3 and Section 4, this naive method simply consisted in

a for loop repeatedly applying ?.

20

To compare the computation time, we use the R package microbenchmark version 1.5.0 (Mersmann,

2024) with R version 4.4.0 (2024-04-24) and sanssouci version 0.14.1, on a MacBook Air M1 (2020)

running macOS 15.1.1. The package microbenchmark allows to run code snippets a given number

n_repl of times, and to compute summary statistics on the computation time. The script executing

the computation can be found in the same repository as this manuscript.

Four scenarios are studied, all based on a common setting which we first describe. A number m of

hypotheses is tested. We use a reference family (Rk, ζk) such that the Rk’s have a forest structure

of maximal depth H = 10. The graph of the inclusion relations between the Rk’s is a binary

tree, hence there are 2H − 1 = 1023 Rk’s and in particular 2H−1 = 512 atoms. The p-values are

generated in a gaussian one-sided fashion (see Example 2.1) where H0,i = {N (µ, Id) : µi = 0},
H1,i = {N (µ, Id) : µi = 4}. H1 is comprised of the leafs 1, 5, 9 and 10, that isH1 = P1∪P5∪P9∪P10.

For each scenario, the curve (V ∗
R({1, . . . , t}))t∈N∗

m
is computed. For the experiments including

pruning, the pruning is done once before the n_repl replications, to mimick the practice where

pruning only needs to be done once and for all, while the user may be interested in computing

multiple bounds and curves after that.

In scenarios 1 and 2, m = 1024 (so the atoms are of size 2), in scenarios 3 and 4, m = 10240 (so

the atoms are of size 10). In scenarios 1 and 3, the ζk’s are estimated trivially by ζk = |Rk|, and in

scenarios 2 and 4, they are computed as in Durand et al. (2020) with the DKWM inequality (Dvoretzky

et al., 1956; Massart, 1990). Because of the size of m and the poor performances of the naive approach,

we set n_repl=100 in scenarios 1 and 2 and n_repl=10 only in scenarios 3 and 4. The differences

between the scenarios are summarized in Table 1.

Table 1: Differences between the scenarios

parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4

m 1024 1024 10240 10240

zeta computation trivial DKWM trivial DKWM

n_repl 100 100 10 10

For the trivial ζk computation of scenarios 1 and 3, the pruning obviously deletes all non-atom

regions so |Kpr| = 512. Whereas, for the particular instance ω ∈ Ω in the experiments, |Kpr| = 541
for scenario 2, and |Kpr| = 573 for scenario 4. Those results alone illustrate the benefits of pruning

with respect to the reduction of the cardinality of the reference family: the regions above atoms with

no signal (or no detectable signal in the trivial scenarios) are pruned. The fact that the regions above

atoms with detectable signal are not pruned means that they are relevant for the confidences bounds

(which had already been demonstrated in the simulation study of Durand et al. (2020)).

The summary statistics of the computation time in each scenario are presented in Table 2, Table 3,

Table 4, and Table 5, and they are also presented as boxplots in Figure 12. The time unit is the second.

Table 2: Scenario 1

expr min lq mean median uq max neval

naive.not.pruned 3.6708287 3.8028650 3.8149199 3.8221756 3.8362092 3.9022797 100

naive.pruned 3.3147519 3.4198975 3.4353463 3.4470054 3.4657886 3.5459636 100

fast.not.pruned 0.0035286 0.0035779 0.0046194 0.0036011 0.0036321 0.1014023 100

fast.pruned 0.0011960 0.0012314 0.0012535 0.0012430 0.0012703 0.0013603 100

21

Table 3: Scenario 2

expr min lq mean median uq max neval

naive.not.pruned 3.7152477 3.8110591 3.9803535 3.8483790 3.9549886 10.1338336 100

naive.pruned 3.3277028 3.4592016 3.5465768 3.5060270 3.6059210 5.4159371 100

fast.not.pruned 0.0032789 0.0033216 0.0067553 0.0033482 0.0033857 0.1978229 100

fast.pruned 0.0013597 0.0013884 0.0014134 0.0014056 0.0014298 0.0017731 100

Table 4: Scenario 3

expr min lq mean median uq max neval

naive.not.pruned 336.0473732 336.7254511 338.6804399 337.0286221 340.9009506 344.4716282 10

naive.pruned 332.4762463 332.8188433 334.4660587 334.1282526 335.5376761 337.6580202 10

fast.not.pruned 0.0323725 0.0324755 0.0328789 0.0325803 0.0328097 0.0354455 10

fast.pruned 0.0099485 0.0100272 0.0101948 0.0101886 0.0102164 0.0107677 10

Table 5: Scenario 4

expr min lq mean median uq max neval

naive.not.pruned 340.4702704 341.4280632 344.8181652 344.3519587 348.6074564 350.4574742 10

naive.pruned 337.2238865 338.1905987 340.4203488 340.4743933 342.7488030 344.1039957 10

fast.not.pruned 0.0294732 0.0296390 0.0299436 0.0298885 0.0300172 0.0307673 10

fast.pruned 0.0124157 0.0126186 0.0137188 0.0127803 0.0130546 0.0194847 10

In each scenario, using the fast algorithm is much faster than the naive approach, with a speed factor

of at least 1000. Using the naive approach, pruning always gives a slight improvement over not

pruning. Using the fast algorithm, the benefits of pruning are significant, with a speed factor of at

least 2, and sometimes 3.

Comparing scenarios 1 and 2 first, we see that, as expected, there is no significant change in

computation time for naive.not.pruned. Methods naive.pruned and fast.pruned are faster

in scenario 1, given that we prune more. But, on the other hand, fast.not.pruned is slightly faster

in scenario 2. This is because, for the regions with signal, said signal is detected and so those regions

are quickly saturated, in the sense that we quickly have ηtk = ζk and k added to K−
k , which saves a

lot of time.

The comparison between scenarios 3 and 4 is similar. Although, with only n_repl=10, the statistics

seem less accurate, this can be confirmed with additional experiments (n_repl can also be set to

100 without problem if we don’t include naive methods).

Finally, comparing scenarios 3 & 4 with scenarios 1 & 2, we see that multiplying the number

of hypotheses by 10 effectively multiplies the computation time by ∼ 10 when using ? and by

∼ 100 when using ? naively, which illustrates the stated complexities of O(|K|m) and O(|K|m2),
respectively.

6 Conclusion

In conclusion, we effectively introduced a new algorithm to compute a curve of confidence upper

bounds for the false discoveries, or, equivalently, for the FDP, that is much faster than the previous

22

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

Comp. time, scenario 1

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

1e
−

03
1e

−
02

1e
−

01
1e

+
00

1e
+

01

Comp. time, scenario 2

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

Comp. time, scenario 3

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

1e
−

02
1e

−
01

1e
+

00
1e

+
01

1e
+

02

Comp. time, scenario 4

se
co

nd
s

na
iv

e.
no

t.p
ru

ne
d

na
iv

e.
pr

un
ed

fa
st

.n
ot

.p
ru

ne
d

fa
st

.p
ru

ne
d

Figure 12: Computation times in each scenario, in seconds (using a logarithmic scale)

23

alternative, with one power of m less in the complexity. This algorithm can be applied as soon as the

confidence upper bound is built according to the JER framework, when the reference family exhibit a

forest structure.

To develop new confidence upper bound methods and test them on simulations, it was previously not

conceivable to replicate experiments a sufficient number of times while computing whole curves. For

instance, in the simulation study of Durand et al. (2020), the number of replications chosen was 10

and the whole curve was not computed, only ten values along the curve were computed, for an m set

to 12800, that is 0.078% of the curve had been computed. Now, simulation studies with an adequate

number of replications and 100% of the curve become feasible.

A lot of work remains to be done on the sanssouci package. For example, to make the data format of

a forest structure (Rk)k∈K less convoluted and more user-friendly is an interesting project. Another

one would be to implement inside the package the methods of the paper Blain et al. (2022), which

are currently only available in the Python language (Van Rossum and Drake, 2009), and the methods

of the paper Meah et al. (2024).

Other current works include the development of new reference families with theoretically proven

JER control that could better account for realistic models, such as models with dependence between

the p-values, see for example Perrot-Dockès et al. (2023), or models with discreteness.

7 Proofs

7.1 Proofs of Section 3.1

7.1.1 Proof of Proposition 3.1

Recall Equation (11) and, because Rpr
also has a forest structure,

V ∗
Rpr(S) = min

Q⊆Kpr

∑
k′∈Q

ζk′ ∧ |S ∩Rk′ |+

∣∣∣∣∣∣S \
⋃
k′∈Q

Rk′

∣∣∣∣∣∣
 , (19)

so we immediately get that V ∗
R(S) ≤ V ∗

Rpr(S).

Let any Q ⊆ K. We split Q in A elements of K \ Kpr
, denoted (i0,a, ipa,a − 1), 1 ≤ a ≤ A

for some pa ≥ 2, and B elements of Kpr
, simply denoted kb, 1 ≤ b ≤ B. By the definition of

Kpr
and the previous remarks, for any 1 ≤ a ≤ A, there exist integers i1,a, . . . , ipa−1,a such that

i0,a < i1,a < · · · < ipa−1,a < ipa,a, (ij−1,a, ij,a − 1) ∈ Kpr
for all 1 ≤ j ≤ pa, and ζ(i0,a,ipa,a−1) ≥∑pa

j=1 ζ(ij−1,a,ij,a−1). Now let

Qpr = {kb : 1 ≤ b ≤ B} ∪ {(ij−1,a, ij,a − 1) : 1 ≤ a ≤ A, 1 ≤ j ≤ pa}. (20)

We have that Qpr ⊆ Kpr
and

⋃
k∈QRk =

⋃
k∈Qpr Rk. Then,

∑
k∈Q

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃
k∈Q

Rk

∣∣∣∣∣∣ =
B∑
b=1

ζkb ∧ |S ∩Rkb |

+

A∑
a=1

ζ(i0,a,ipa,a−1) ∧ |S ∩R(i0,a,ipa,a−1)|

+

∣∣∣∣∣∣S \
⋃
k∈Q

Rk

∣∣∣∣∣∣ ,
24

but for all 1 ≤ a ≤ A,

ζ(i0,a,ipa,a−1) ≥
pa∑
j=1

ζ(ij−1,a,ij,a−1)

≥
pa∑
j=1

ζ(ij−1,a,ij,a−1) ∧ |S ∩R(ij−1,a,ij,a−1)|,

so the term

∑A
a=1 ζ(i0,a,ipa,a−1) ∧ |S ∩R(i0,a,ipa,a−1)| is greater than or equal to

A∑
a=1

 pa∑
j=1

ζ(ij−1,a,ij,a−1) ∧ |S ∩R(ij−1,a,ij,a−1)|

 ∧ |S ∩R(i0,a,ipa,a−1)|,

which is simply equal to

A∑
a=1

pa∑
j=1

ζ(ij−1,a,ij,a−1) ∧ |S ∩R(ij−1,a,ij,a−1)|.

Furthermore

∣∣∣S \⋃k∈QRk

∣∣∣ = ∣∣∣S \⋃k∈Qpr Rk

∣∣∣ so finally:

∑
k∈Q

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃
k∈Q

Rk

∣∣∣∣∣∣ ≥
∑

k∈Qpr

ζk ∧ |S ∩Rk|+

∣∣∣∣∣∣S \
⋃

k∈Qpr

Rk

∣∣∣∣∣∣ (21)

≥ V ∗
Rpr(S).

Note that Equation (21) is true even if there are some b ∈ {1, . . . , B}, a ∈ {1, . . . , A}, j ∈
{1, . . . , pa} such that kb = (ij−1,a, ij,a − 1). We minimize over all Q to get that V ∗

R(S) ≥ V ∗
Rpr(S).

7.1.2 Proof of Proposition 3.2

First,K\L ⊆ K\Kpr
is trivial: a k such that ζk ≥

∑
k′∈Succk V eck′ obviously satisfies the condition

of Definition 3.1 to be pruned.

Now let (i, i′) ∈ K \ Kpr
an element that is pruned by Definition 3.1, so there exists p ≥ 2 and

integers i1, . . . , ip−1 such that, when setting i0 = i and ip = i′+1, the sequence (i0, . . . , ip) is strictly

increasing, (ij−1, ij − 1) ∈ K for all 1 ≤ j ≤ p and finally ζ(i,i′) = ζ(i0,ip−1) ≥
∑p

j=1 ζ(ij−1,ij−1).

Then by the proof of Theorem 1 of Durand et al. (2020) but applied to S = R(i,i′) we have that∑p
j=1 ζ(ij−1,ij−1) ≥

∑
k′∈Succ(i,i′)

V eck′ (see the unnumbered line just above Equation (A4) in that

paper) and so ζ(i,i′) ≥
∑

k′∈Succ(i,i′)
V eck′ hence (i, i′) is pruned by ? and K \ Kpr ⊆ K \ L.

In the end, K \ Kpr = K \ L so Kpr = L.

7.2 Proof of Theorem 3.1

In this section, every reference to a line is a reference to a line of ?.

7.2.1 Derivation of (18)

We first derive (18) from (16) and (17). First note that for all Q ∈ P,

Q =
⋃

k∈K1

{k′ ∈ Q : Rk′ ⊆ Rk} (22)

25

and the union is disjoint. From (12), let Q∗ ∈ P such that V ∗
R(St) =

∑
k′∈Q∗ ζk′ ∧ |St ∩Rk′ |. Then

by (22),

V ∗
R(St) =

∑
k′∈Q∗

ζk′ ∧ |St ∩Rk′ |

=
∑
k∈K1

∑
k′∈Q∗

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |

=
∑
k∈K1

∑
k′∈Q∗

Rk′⊆Rk

ζk′ ∧ |St ∩ (Rk ∩Rk′)|

=
∑
k∈K1

∑
k′∈Q∗

ζk′ ∧ |(St ∩Rk) ∩Rk′ | (23)

≥
∑
k∈K1

V ∗
R(St ∩Rk), (24)

where the equality in (23) comes from the fact that if Rk′ ̸⊆ Rk , then Rk′∩Rk = ∅, that is, Rk ⊊ Rk′

is impossible because k ∈ K1
. Furthermore, (24) holds again by (12).

Because K1 ⊆ Kt, by (17), V ∗
R(St ∩Rk) =

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ | for all k ∈ K1
. Then,

∑
k∈K1

V ∗
R(St ∩Rk) =

∑
k∈K1

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |

=
∑
k∈Pt

ζk ∧ |St ∩Rk| by (22)

≥ V ∗
R(St) by (12).

So we proved that V ∗
R(St) =

∑
k∈Pt ζk ∧ |St ∩ Rk| =

∑
k∈K1 V ∗

R(St ∩ Rk) and finally V ∗
R(St) =∑

k∈K1 V ∗
R(St ∩Rk) =

∑
k∈K1 ηtk by (16), again because K1 ⊆ Kt. Every equality in (18) is proven.

7.2.2 Proof that Pt ∈ P

By completeness, F ⊆ K and so P0 ⊆ K. First we show that N∗
m =

⋃
k∈P0 Rk. Let j ∈ N∗

m and

i ∈ N∗
N such that j ∈ R(i,i). Let G =

{
k ∈ K−

0 : j ∈ Rk

}
. If G = ∅, for any k ∈ K−

0 , R(i,i) ⊆ Rk

would imply that j ∈ Rk and k ∈ G, hence a contradiction, and so (i, i) ∈ F and j ∈
⋃

k∈P0 Rk. If

G ̸= ∅, for any k, k′ ∈ G, j ∈ Rk ∩Rk′ so, by forest structure, Rk ⊆ Rk′ or Rk′ ⊆ Rk , hence ⊆ is a

total order on the finite, non-empty set {Rk : k ∈ G}, so the latter has a maximum and there exists a

unique k∗ ∈ G such that Rk∗ = maxk∈GRk. Let us show that, as an element of K−
0 , k∗ is maximal,

which will imply that k∗ ∈ E and that j ∈
⋃

k∈P0 Rk. Let any k′ ∈ K−
0 such that Rk∗ ⊆ Rk′ ,

then j ∈ Rk′ , so k′ ∈ G and so Rk′ ⊆ maxk∈GRk = Rk∗ . Hence Rk∗ = Rk′ and k∗ = k′ (see

Remark 2.2), k∗ is indeed maximal, k∗ ∈ E and j ∈
⋃

k∈P0 Rk. This proves that N∗
m =

⋃
k∈P0 Rk.

Now let us prove that the elements P0
index disjoints sets. Let k, k′ ∈ P0

such that there exists

j ∈ Rk ∈ Rk′ . By forest structure, Rk ⊆ Rk′ or Rk′ ⊆ Rk. Now we separate four cases. The case

k ∈ F, k′ ∈ E is impossible, because k would be the index of an atom, so we would imperatively

have Rk ⊆ Rk′ , which would contradict the definition of F . Similarly, k ∈ F ′, k ∈ E is impossible.

If k, k′ ∈ E, then k = k′ by the very definition of E. Finally, if k ∈ F, k′ ∈ F , Rk and Rk′ are both

atoms, and because the atoms realize a partition of N∗
m, then k = k′. In all cases, k = k′ which

concludes.

26

The Rk, k ∈ P0
, are disjoint, non-empty (see Remark 2.2), and cover N∗

m, so they form a partition of

N∗
m, in other words, P0 ∈ P.

We then show that Pt ∈ P by recursion. We just showed that P0 ∈ P. Let t ∈ {0, . . . ,m − 1}
and assume that Pt ∈ P. In many cases, Pt+1 = Pt

and so Pt+1 ∈ P by the recursion hypothesis.

Otherwise, Pt+1
is given by the adjustment in line 17, in which case we have

Pt+1 =

(
Pt \ {k ∈ Pt, Rk ⊆ R

k
(t+1,h

f
t+1)
}
)
∪ {k(t+1,hf

t+1)}. (25)

Note that this imply that it+1 ̸∈
⋃

κ∈K−
t
Rκ (see lines 6 and 10).

Let j ∈ N∗
m and k ∈ Pt

such that j ∈ Rk . If Rk ⊆ R
k
(t+1,h

f
t+1)

, then j ∈ R
k
(t+1,h

f
t+1)
⊆
⋃

κ∈Pt+1 Rκ,

and if not, k ∈ Pt+1
and again j ∈

⋃
κ∈Pt+1 Rκ.

Now let k, k′ ∈ Pt+1
, k ̸= k′. If both are different from k(t+1,hf

t+1), then they are both in Pt ∈ P so

Rk ∩Rk′ = ∅. Assume that k′ = k(t+1,hf
t+1). By the forest structure, Rk ∩Rk′ = ∅, or R

k
(t+1,h

f
t+1)

,

or Rk. By (25), the latter is impossible. It remains to show that Rk ∩Rk′ = R
k
(t+1,h

f
t+1)

is also not

possible, in other words that we can’t have R
k
(t+1,h

f
t+1)

⊊ Rk. If that was the case, because of the

strict inclusion, we would have k ̸∈ F because Rk could not be an atom, so we would have either

k ∈ E ⊆ K−
0 ⊆ K

−
t or k ∈ Pt \P0

. In the second case, k would have been added to Pt′
at a previous

step t′ ≤ t of the algorithm, but in that case it would also have been added to K−
t′ ⊆ K

−
t (see lines 17

and 18). So in the end, in both cases, we would have

it+1 ∈ R
k
(t+1,h

f
t+1)

⊊ Rk ⊆
⋃

κ∈K−
t

Rκ

which is a contradiction with the fact that it+1 ̸∈
⋃

κ∈K−
t
Rκ, and so Rk ∩ Rk′ = ∅, and finally

Pt+1 ∈ P.

7.2.3 Proof of (16) and (17)

We show the remainder of the statements with a strong recursion over t. We have P0 ∈ P by

previous section, and given that S0 = ∅ and η0k = 0 for all k ∈ K (recall that K0 = K), everything

is equal to 0 in (16) and (17).

So we let t ∈ {0, . . . ,m − 1}, and assume that Pt′ ∈ P and that (16) and (17) hold for all t′ ≤ t.
In all the following, k̄ is the element of Pt

such that it+1 ∈ Rk̄. We will distinguish two cases: if

it+1 ∈
⋃

κ∈K−
t
Rκ or not. First we show an inequality that will be used in both cases. We have, for

all k ∈ Kt,

V ∗
R(St+1 ∩Rk) ≤

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |. (26)

Indeed, by (12),

V ∗
R(St+1 ∩Rk) ≤

∑
k′∈Pt

ζk′ ∧ |St+1 ∩Rk ∩Rk′ |.

For any k′ ∈ Pt
, we have either Rk′∩Rk = ∅, in which case |St+1∩Rk∩Rk′ | = 0, either Rk′ ⊆ Rk ,

in which case |St+1 ∩Rk ∩Rk′ | = |St+1 ∩Rk′ |, but Rk ⊊ Rk′ is impossible. Indeed, by definition of

Kt, there exists k̃ ∈ Pt
such that Rk̃ ⊆ Rk , so Rk ⊊ Rk′ would entail Rk̃ ⊊ Rk′ which is impossible

since k′, k̃ ∈ Pt ∈ P and so Rk̃ and Rk′ are part of a partition of N∗
m. This gives (26).

27

7.2.3.1 First case: it+1 ∈
⋃

κ∈K−
t
Rκ

In this case, Pt+1 = Pt
and Kt+1 = Kt. For any k ∈ Kt+1 such that it+1 ̸∈ Rk (or, equivalently,

such that St+1 ∩Rk = St ∩Rk),∑
k′∈Pt+1

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | =
∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |

= V ∗
R(St ∩Rk) by (17)

= ηtk by (16)

= ηt+1
k

because ηtk = ηt+1
k for all k ∈ K. Furthermore St+1∩Rk = St∩Rk so V ∗

R(St+1∩Rk) = V ∗
R(St∩Rk).

So everything is proved for such a k.

Now we let k ∈ Kt+1 such that it+1 ∈ Rk or, equivalently, such that Rk̄ ⊆ Rk. We first need to

show that ζk̄ ≤ |St ∩Rk̄|, and for that we need to distinguish two subcases: if k̄ has been added to

Pt
during a previous step of the algorithm (see line 17), or if not. Note that k̄ being added to Pt

during a previous step means that there exists t′, 1 ≤ t′ ≤ t, such that hft′ is defined and k̄ = k(t
′,hf

t′).

The contrary means that for all t′, 1 ≤ t′ ≤ t such that hft′ is defined, k̄ ̸= k(t
′,hf

t′), and also that

k̄ ∈ Pt′
for all t′ ∈ {0, . . . , t}.

7.2.3.1.1 First subcase: k̄ has never been added during the process of line 17

As remarked just above, k̄ ∈ P0 = E ∪ F . Our goal is to show that k̄ ̸∈ F . This will imply that

k̄ ∈ E ⊆ K−
0 and so that ζk̄ = 0 ≤ |St ∩Rk̄| as desired.

Let us assume that k̄ ∈ F and find a contradiction. k̄ is then the index of an atom that contains

it+1, and it+1 ∈
⋃

κ∈K−
t
Rκ, so there exists k′ ∈ K−

t such that it+1 ∈ Rk′ and then, by atomicity,

Rk̄ ⊆ Rk′ . By definition of F , k′ cannot be in K−
0 , so there exists t′ ∈ {1, . . . , t} such that k′ has

been added to K−
t′ by the process of line 18, and so, by lines 16 and 17, k′ = k(t

′,hf

t′) and k′ ∈ Pt′
.

But we also have k̄ ∈ Pt′
, and so by Pt′

realizing a partition, the inclusion Rk̄ ⊆ Rk′ is actually an

egality, so k̄ = k′ = k(t
′,hf

t′), which is not possible by assumption of this first subcase.

7.2.3.1.2 Second subcase: k̄ has been added to Pt at a previous step

Let t′ ≤ t be this step. This means that k̄ = k(t
′,hf

t′) and that at that step ηt
′

k̄
≥ ζk̄, because the if

condition in line 13 failed. Also k̄ ∈ Pt′
so k̄ ∈ Kt′ so we can write

ζk̄ ≤ ηt
′

k̄

= V ∗
R(St′ ∩Rk̄) by (16)

≤ |St′ ∩Rk̄|
≤ |St ∩Rk̄|.

This concludes the two subcases dichotomy: ζk̄ ≤ |St ∩ Rk̄| and we can go back to our k ∈ Kt+1

such that it+1 ∈ Rk and Rk̄ ⊆ Rk.

28

7.2.3.1.3 End of the first case

We write the following chain of claims:

V ∗
R(St+1 ∩Rk) ≤

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | by (26) and Kt+1 ⊆ Kt

=
∑
k′∈Pt

Rk′⊆Rk

k′ ̸=k̄

ζk′ ∧ |St+1 ∩Rk′ |+ ζk̄ ∧ |St+1 ∩Rk̄|

=
∑
k′∈Pt

Rk′⊆Rk

k′ ̸=k̄

ζk′ ∧ |St ∩Rk′ |+ ζk̄ ∧ (|St ∩Rk̄|+ 1)

=
∑
k′∈Pt

Rk′⊆Rk

k′ ̸=k̄

ζk′ ∧ |St ∩Rk′ |+ ζk̄ ∧ |St ∩Rk̄| because ζk̄ ≤ |St ∩Rk̄|

=
∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ | =
∑

k′∈Pt+1

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |

= V ∗
R(St ∩Rk) by (17)

= ηtk by (16)

= ηt+1
k .

But on the other hand, St ⊆ St+1 and so (12) also gives V ∗
R(St ∩ Rk) ≤ V ∗

R(St+1 ∩ Rk) and so in

the end we have the desired outcome:

V ∗
R(St+1 ∩Rk) = ηt+1

k =
∑

k′∈Pt+1

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |,

which concludes this first case.

7.2.3.2 Second case: it+1 ̸∈
⋃

κ∈K−
t
Rκ

Like in the first case, considering a k ∈ Kt+1 ⊆ Kt such that it+1 ̸∈ Rk is not problematic, because

in that case k is not visited at all by the algorithm at step t + 1 : ηt+1
k = ηtk, {k′ ∈ Pt+1 : Rk′ ⊆

Rk} = {k′ ∈ Pt : Rk′ ⊆ Rk}, and for all k′ ∈ K such that Rk′ ⊆ Rk, St+1 ∩ Rk′ = St ∩ Rk′ .

Hence, from

V ∗
R(St ∩Rk) = ηtk =

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |,

we directly have

V ∗
R(St+1 ∩Rk) = ηt+1

k =
∑

k′∈Pt+1

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |.

So we now focus on the k ∈ Kt+1 such that it+1 ∈ Rk. Note that for such k,

ηt+1
k = ηtk + 1 = V ∗

R(St ∩Rk) + 1 =
∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |+ 1

29

by construction, by (16) and by (17). Indeed, such a k is equal to a k(t+1,h)
with h ≤ hmax(t+ 1),

and even h ≤ hft+1 if the latter exists.

Also, similarly to the first case, for all k ∈ Kt+1 such that it+1 ∈ Rk (recall that this is equivalent to

Rk̄ ⊆ Rk), we can write:

V ∗
R(St+1 ∩Rk) ≤

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | by (26) and Kt+1 ⊆ Kt

=
∑
k′∈Pt

Rk′⊆Rk

k′ ̸=k̄

ζk′ ∧ |St+1 ∩Rk′ |+ ζk̄ ∧ |St+1 ∩Rk̄|

=
∑
k′∈Pt

Rk′⊆Rk

k′ ̸=k̄

ζk′ ∧ |St ∩Rk′ |+ ζk̄ ∧ (|St ∩Rk̄|+ 1)

≤
∑
k′∈Pt

Rk′⊆Rk

k′ ̸=k̄

ζk′ ∧ |St ∩Rk′ |+ ζk̄ ∧ |St ∩Rk̄|+ 1

=
∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St ∩Rk′ |+ 1

= V ∗
R(St ∩Rk) + 1 by (17). (27)

Note that by the joint construction of K−
t and Pt

on lines 17 and 18, the fact that it+1 ̸∈
⋃

κ∈K−
t
Rκ

implies that k̄ ∈ F , so k̄ is the index of an atom, so actually hmax(t+1) = ϕ(k̄), k̄ = k(t+1,ϕ(k̄))
and

the Rk , k ∈ Kt, such that Rk̄ ⊆ Rk are nested and are exactly indexed by the k(t+1,h)
, 1 ≤ h ≤ ϕ(k̄).

We now prove that for all of them, V ∗
R(St+1∩Rk) ≥ V ∗

R(St∩Rk)+1, which will be true in particular

for the ones that are in Kt+1, given that Kt+1 ⊆ Kt. We do that by constructing some sets Ah with

good properties with a descending recursion on h, starting from ϕ(k̄). We only give the first two

steps of the construction, because every other step is exactly the same as the second one, which

contains the recursive arguments. We go back to the real definition of V ∗
R to do so, for any S ⊆ Nm:

V ∗
R(S) = max

A⊆Nm

∀k′∈K,|A∩Rk′ |≤ζk′

|A ∩ S| = max
A⊆S

∀k′∈K,|A∩Rk′ |≤ζk′

|A|. (28)

By (28), we have that V ∗
R(St ∩ Rk(t+1,ϕ(k̄))) = |Aϕ(k̄)| for a given Aϕ(k̄) ⊆ St ∩ Rk(t+1,ϕ(k̄)) and

such that |Aϕ(k̄) ∩ Rk′ | ≤ ζk′ for all k′ ∈ K. Now for the second set, we construct Aϕ(k̄)−1. Note

that V ∗
R(St ∩Rk(t+1,ϕ(k̄)−1)) = |B| for some B ⊆ St ∩Rk(t+1,ϕ(k̄)−1) and such that |B ∩Rk′ | ≤ ζk′

for all k′ ∈ K. By reductio ad absurdum, if there are strictly less than V ∗
R(St ∩ Rk(t+1,ϕ(k̄)−1)) −

V ∗
R(St ∩Rk(t+1,ϕ(k̄))) = |B| − |Aϕ(k̄)| elements in St ∩Rk(t+1,ϕ(k̄)−1) \ St ∩Rk(t+1,ϕ(k̄)) , then |B|+
|St ∩ Rk(t+1,ϕ(k̄)) | − |St ∩ Rk(t+1,ϕ(k̄)−1) | > |Aϕ(k̄)| = V ∗

R(St ∩ Rk(t+1,ϕ(k̄))). Given that B ∪ (St ∩
Rk(t+1,ϕ(k̄))) ⊆ St ∩ Rk(t+1,ϕ(k̄)−1) , this entails |B ∩ St ∩ Rk(t+1,ϕ(k̄)) | = |B| + |St ∩ Rk(t+1,ϕ(k̄)) | −
|B ∪ (St ∩Rk(t+1,ϕ(k̄)))| > V ∗

R(St ∩Rk(t+1,ϕ(k̄))) which contradicts the maximality of Aϕ(k̄) in (28).

So we construct Aϕ(k̄)−1 by taking the disjoint union of Aϕ(k̄) and V ∗
R(St ∩Rk(t+1,ϕ(k̄)−1))−V ∗

R(St ∩
Rk(t+1,ϕ(k̄))) elements of St ∩ Rk(t+1,ϕ(k̄)−1) \ St ∩ Rk(t+1,ϕ(k̄)) . We now establish the properties of

Aϕ(k̄)−1. First, Aϕ(k̄)−1 ⊆ St∩Rk(t+1,ϕ(k̄)−1) , and |Aϕ(k̄)−1| = V ∗
R(St∩Rk(t+1,ϕ(k̄)−1)). For all k′ ∈ K

30

such that Rk(t+1,ϕ(k̄)−1) ∩Rk′ = ∅, we have |Aϕ(k̄)−1 ∩Rk′ | = 0 ≤ ζ ′k. Furthermore,

|Aϕ(k̄)−1 ∩Rk(t+1,ϕ(k̄)) | = |Aϕ(k̄) ∩Rk(t+1,ϕ(k̄)) |
≤ ζk(t+1,ϕ(k̄))

by construction of Aϕ(k̄). Finally, for all k′ such that Rk(t+1,ϕ(k̄)−1) ⊆ Rk′ , |Aϕ(k̄)−1 ∩ Rk′ | =
|Aϕ(k̄)−1| = V ∗

R(St∩Rk(t+1,ϕ(k̄)−1)) = |B|with the previously definedB, in particular |B∩Rk′ | ≤ ζk′ ,
but given that B ⊆ St ∩ Rk(t+1,ϕ(k̄)−1) , |B ∩ Rk′ | = |B|. Wrapping all those equalities, it comes

that |Aϕ(k̄)−1 ∩Rk′ | ≤ ζk′ . In the end, |Aϕ(k̄)−1 ∩Rk′ | ≤ ζk′ for all k′ ∈ K, so Aϕ(k̄)−1 realizes the

maximum in (28) for St ∩Rk(t+1,ϕ(k̄)−1) .

By applying exactly the same method, we recursively construct a non-increasing sequence Aϕ(k̄) ⊆
· · · ⊆ A1 such that for all ℓ ∈ {1, . . . , ϕ(k̄)} and k′ ∈ K, Aℓ ⊆ St ∩Rk(t+1,ℓ) , V ∗

R(St ∩Rk(t+1,ℓ)) =
|Aℓ|, and |Aℓ ∩Rk′ | ≤ ζk′ . Furthermore for ℓ′ > ℓ, Aℓ \Aℓ′ ⊆ St ∩Rk(t+1,ℓ) \ St ∩Rk(t+1,ℓ′) . Also

note that the fact that it+1 ̸∈
⋃

κ∈K−
t
Rκ implies that ηt

k(t+1,ℓ) < ζk(t+1,ℓ) for all ℓ ∈ {1, . . . , ϕ(k̄)}.
So by (16), |Aℓ| < ζk(t+1,ℓ) .

Let, for any ℓ ∈ {1, . . . , ϕ(k̄)}, Ãℓ = Aℓ ∪ {it+1}. Given that Aℓ ⊆ St ∩ Rk(t+1,ℓ) and that

it+1 ∈ St+1 \ St, Ãℓ ⊆ St+1 ∩ Rk(t+1,ℓ) , |Ãℓ| = |Aℓ| + 1, and for all ℓ′ ∈ {1, . . . , ϕ(k̄)}, |Ãℓ ∩
Rk(t+1,ℓ′) | = |Aℓ ∩Rk(t+1,ℓ′) |+ 1. Note that if, furthermore, ℓ ≥ ℓ′, then Aℓ ⊆ Aℓ′ , so

|Ãℓ ∩Rk(t+1,ℓ′) | = |Aℓ ∩Rk(t+1,ℓ′) |+ 1

≤ |Aℓ′ ∩Rk(t+1,ℓ′) |+ 1

= |Aℓ′ |+ 1

< ζk(t+1,ℓ′) + 1.

On the contrary, if ℓ < ℓ′, we write that

|Ãℓ ∩Rk(t+1,ℓ′) | = |Aℓ ∩Rk(t+1,ℓ′) |+ 1

= |(Aℓ \Aℓ′) ∩Rk(t+1,ℓ′) |+ |Aℓ′ ∩Rk(t+1,ℓ′) |+ 1

< 0 + ζk(t+1,ℓ′) + 1,

because Aℓ \ Aℓ′ ⊆ Rk(t+1,ℓ) \ Rk(t+1,ℓ′) hence (Aℓ \ Aℓ′) ∩ Rk(t+1,ℓ′) = ∅. In both cases, |Ãℓ ∩
Rk(t+1,ℓ′) | < ζk(t+1,ℓ′) + 1 so |Ãℓ ∩ Rk(t+1,ℓ′) | ≤ ζk(t+1,ℓ′) . Additionally, for all k′ ∈ K such that

it+1 ̸∈ Rk′ , |Ãℓ ∩Rk′ | = |Aℓ ∩Rk′ | ≤ ζk′ .

In the end, |Ãℓ ∩Rk′ | ≤ ζk′ for all k′ ∈ K, so

V ∗
R(St+1 ∩Rk(t+1,ℓ)) ≥ |Ãℓ| by (28)

= |Aℓ|+ 1

= V ∗
R(St ∩Rk(t+1,ℓ)) + 1.

So, as we wanted, V ∗
R(St+1 ∩Rk) ≥ V ∗

R(St ∩Rk) + 1 for all k ∈ Kt such that it+1 ∈ Rk and so for

all such k that are in Kt+1. So every inequality in (27) becomes an equality and we have proven that

V ∗
R(St+1 ∩Rk) = V ∗

R(St ∩Rk) + 1 = ηtk + 1 = ηt+1
k ,

that is, (16) is true at t+ 1. Looking at the first line of (27) , we also proved that

V ∗
R(St+1 ∩Rk) =

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |. (29)

31

The only thing left to prove is that (29) is also true with Pt+1
instead of Pt

, that is that (17) also

holds at t+ 1, or, put differently, that∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | =
∑

k′∈Pt+1

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |. (30)

If hft+1 does not exist, meaning that we didn’t break the loop, Pt+1 = Pt
so there is nothing to prove.

Now assume that hft+1 exists. So (25) holds. We will split each term in (30) in a sum of two terms.

First, note that by (25), for any k′ ∈ K such that Rk′ ∩R
k
(t+1,h

f
t+1)

= ∅, we have that k′ ∈ Pt+1
if

and only if k′ ∈ Pt
. And so,∑

k′∈Pt+1

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | =
∑

k′∈Pt+1

Rk′∩R
k
(t+1,h

f
t+1)

=∅

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |+ ζ
k
(t+1,h

f
t+1)
∧ |St+1 ∩R

k
(t+1,h

f
t+1)
|

=
∑
k′∈Pt

Rk′∩R
k
(t+1,h

f
t+1)

=∅

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |+ ζ
k
(t+1,h

f
t+1)
∧ |St+1 ∩R

k
(t+1,h

f
t+1)
|.

Recall that we already proved that there is no k′ ∈ Pt
such that R

k
(t+1,h

f
t+1)

⊊ Rk′ , so for any

k′ ∈ Pt
, either Rk′ ∩R

k
(t+1,h

f
t+1)

= ∅ or Rk′ ⊆ R
k
(t+1,h

f
t+1)

. Hence the split

∑
k′∈Pt

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | =
∑
k′∈Pt

Rk′∩R
k
(t+1,h

f
t+1)

=∅

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | +
∑
k′∈Pt

Rk′⊆R
k
(t+1,h

f
t+1)

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ |

=
∑
k′∈Pt

Rk′∩R
k
(t+1,h

f
t+1)

=∅

Rk′⊆Rk

ζk′ ∧ |St+1 ∩Rk′ | +
∑
k′∈Pt

Rk′⊆R
k
(t+1,h

f
t+1)

ζk′ ∧ |St+1 ∩Rk′ |,

where the last equality comes from the fact that R
k
(t+1,h

f
t+1)
⊆ Rk, because k ∈ Kt+1, it+1 ∈ Rk,

and k(t+1,hf
t+1) ∈ Pt+1

.

Given the two previously made splits, it remains to prove that∑
k′∈Pt

Rk′⊆R
k
(t+1,h

f
t+1)

ζk′ ∧ |St+1 ∩Rk′ | = ζ
k
(t+1,h

f
t+1)
∧ |St+1 ∩R

k
(t+1,h

f
t+1)
|.

Interestingly, this does not depend on k anymore.

Let us show that

ηt+1

k
(t+1,h

f
t+1)

= ζ
k
(t+1,h

f
t+1)

. (31)

Due to hft+1 existing, we broke the loop in line 19, so the condition in line 13 was false, so ηt+1

k
(t+1,h

f
t+1)
≥

ζ
k
(t+1,h

f
t+1)

. We show by recursion over t′ ∈ {0, . . . , t} that ηt
′

k
(t+1,h

f
t+1)

< ζ
k
(t+1,h

f
t+1)

. Given that

32

it+1 ̸∈
⋃

κ∈K−
t
Rκ and it+1 ∈ R

k
(t+1,h

f
t+1)

, k(t+1,hf
t+1) ̸∈ K−

t and in particular k(t+1,hf
t+1) ̸∈ K−

0

so η0

k
(t+1,h

f
t+1)

= 0 < ζ
k
(t+1,h

f
t+1)

. Now let t′ < t and assume that ηt
′

k
(t+1,h

f
t+1)

< ζ
k
(t+1,h

f
t+1)

. We

distinguish two cases. If it′+1 ̸∈ R
k
(t+1,h

f
t+1)

, k(t+1,hf
t+1) is not visited at step t′ + 1 of the algorithm,

so ηt
′+1

k
(t+1,h

f
t+1)

= ηt
′

k
(t+1,h

f
t+1)

< ζ
k
(t+1,h

f
t+1)

by the recursion hypothesis. If it′+1 ∈ R
k
(t+1,h

f
t+1)

, all

k(t
′+1,h)

, h ≤ hft+1, are visited, and for all of them the condition in line 13 is true, otherwise we would

have, for some h ≤ hft+1, k(t
′+1,h) ∈ K−

t′+1 ⊆ K
−
t . Noting that, necessarily, k(t

′+1,h) = k(t+1,h)
,

we would finally have it+1 ∈ R
k
(t+1,h

f
t+1)
⊆ Rk(t+1,h) ⊆

⋃
κ∈K−

t
Rκ which is a contradiction. This

completes the recursion. Specifically for t′ = t, ηt

k
(t+1,h

f
t+1)
≤ ζ

k
(t+1,h

f
t+1)
− 1 and so ηt+1

k
(t+1,h

f
t+1)
≤

ηt

k
(t+1,h

f
t+1)

+ 1 ≤ ζ
k
(t+1,h

f
t+1)

and so (31) holds.

Also note that k(t+1,hf
t+1) ∈ Pt+1 ⊆ Kt+1, which implies two things. Firstly, because (16)

holds at t + 1, ηt+1

k
(t+1,h

f
t+1)

= V ∗
R(St+1 ∩ R

k
(t+1,h

f
t+1)

). Secondly, by applying (29), we get that∑
k′∈Pt

Rk′⊆R
k
(t+1,h

f
t+1)

ζk′ ∧ |St+1 ∩Rk′ | = V ∗
R(St+1 ∩R

k
(t+1,h

f
t+1)

). Wrapping all these assertions:

∑
k′∈Pt

Rk′⊆R
k
(t+1,h

f
t+1)

ζk′ ∧ |St+1 ∩Rk′ | = V ∗
R(St+1 ∩R

k
(t+1,h

f
t+1)

)

= V ∗
R(St+1 ∩R

k
(t+1,h

f
t+1)

) ∧ |St+1 ∩R
k
(t+1,h

f
t+1)
|

= ηt+1

k
(t+1,h

f
t+1)
∧ |St+1 ∩R

k
(t+1,h

f
t+1)
|

= ζ
k
(t+1,h

f
t+1)
∧ |St+1 ∩R

k
(t+1,h

f
t+1)
| by (31),

which achieves the second case and so the proof of Theorem 3.1.

7.3 Proof of Proposition 2.1

Recall that the Rk are assumed to be all non-empty and distinct by Remark 2.2.

The Pn, n ∈ N∗
N , form a partition of N∗

m, so N ≤ m.

There is a sequence R(H) ⊊ · · · ⊊ R(1)
. There exists nH ∈ N∗

N such that PnH ⊆ R(H)
and for

1 ≤ h ≤ H − 1, there exists nh ∈ N∗
N such that Pnh

⊆ R(h) \ R(h+1)
. For h1, h2 such that

1 ≤ h1 < h2 ≤ H , we have Pnh2
⊆ R(h2)

and Pnh1
⊆ R(h1) \ R(h1+1) ⊆ R(h1) \ R(h2)

so

Pnh1
∩ Pnh2

= ∅ and in particular nh1 ̸= nh2 , so h 7→ nh is an injection and H ≤ N .

To show that the three bounds can be achieved simultaneously, we let Pi = {i} for all i ∈ N∗
m,

K = {(i, i), i ∈ N∗
m} ∪ {(1, i), i ∈ N∗

m}, and, as usual, for (i, j) ∈ K, R(i,j) = Pi:j =
⋃

i≤n≤j Pn.

Finally we show by induction over N ≥ 1 that for any family (Rk)k∈K with a forest structure and

N leaves, |K| ≤ 2N − 1. For N = 1 it is trivial, necessarily P1 = N∗
m and then the only possible set

Rk is also N∗
m so |K| = 1 = 2N − 1. Let N ≥ 1. Assume that for any family (Rk)k∈K with a forest

structure and N compatible leaves, |K| ≤ 2N − 1. Let (Rk)k∈K a forest structure with N +1 leaves,

let H its maximum depth, let P1, . . . PN+1 the leaves. If H = 1, all the regions are two-by-two

disjoint so there is an injection from the regions to the leaves and so |K| ≤ N + 1 ≤ 2(N + 1)− 1.

From now on we assume H ≥ 2 and we distinguish two cases.

In the first case, assume that there exists k̂ of depth H , that is ϕ(k̂) = H , such that Rk̂ is comprised

of at least two leaves: there exist ı̃ and ȷ̃ with ȷ̃ ≥ ı̃ + 1 such that Rk̂ =
⋃

ı̃≤n≤ȷ̃ Pn. Let K− =

33

K\ {(̃ı, ı̃), (̃ı+1, ı̃+1)}, (Rk)k∈K− has also a forest structure, and we show that P1, . . . , Pı̃−1, Pı̃ ∪
Pı̃+1, Pı̃+2, . . . , PN+1 is a sequence of N leaves that are compatible with this family. First note that

they well define a partition of N∗
m. Let k ∈ K−

, we just have to prove that if Pı̃ ⊆ Rk or Pı̃+1 ⊆ Rk ,

then Pı̃ ∪ Pı̃+1 ⊆ Rk. If that’s the case, then Rk ∩ Rk̂ ̸= ∅, and by the forest structure property

of K, Rk ⊊ Rk̂ or Rk̂ ⊆ Rk, but actually Rk ⊊ Rk̂ is impossible because ϕ(k̂) = H which is the

maximal depth. So Rk̂ ⊆ Rk, noticing that Pı̃ ∪ Pı̃+1 ⊆ Rk̂, we get the desired result.

On the contrary, in the second case, assume that for all k ∈ K of height H , Rk is a leaf. Let k̂ ∈ K of

depth H , that is ϕ(k̂) = H , and let k̃ ∈ K the element of depth H − 1 such that Rk̂ ⊊ Rk̃. k̃ exists

because H ≥ 2. Identify k̃ to (̃ı, ȷ̃) ∈ (N∗
N)2 such that Rk̃ =

⋃
ı̃≤n≤ȷ̃ Pn. If ȷ̃ = ı̃, then Rk̃ = Pı̃, then

we have also Rk̂ = Pı̃, and there is a contradiction with the fact that Rk̂ ⊊ Rk̃ . So ȷ̃ ≥ ı̃+1. Let again

K− = K\{(̃ı, ı̃), (̃ı+1, ı̃+1)}, and let us show again that P1, . . . , Pı̃−1, Pı̃∪Pı̃+1, Pı̃+2, . . . , PN+1

is a sequence of N leaves that are compatible with (Rk)k∈K− . The reasoning is the same as in the

first case, but working with k̃ instead of k̂. Let k ∈ K−
, such that Pı̃ ⊆ Rk or Pı̃+1 ⊆ Rk. Then

Rk ∩ Rk̃ ̸= ∅, and by the forest structure property of K, Rk ⊊ Rk̃ or Rk̃ ⊆ Rk. But actually

Rk ⊊ Rk̃ is impossible, because this implies that ϕ(k) = H , so Rk is a leaf, so necessarily Rk = Pı̃

or Rk = Pı̃+1, but k ∈ K−
so k ̸= (̃ı, ı̃) and k ̸= (̃ı+ 1, ı̃+ 1), hence a contradiction. So Rk̃ ⊆ Rk,

noticing that Pı̃ ∪ Pı̃+1 ⊆ Rk̃, we get the desired result.

In both cases, we have constructed a forest structure (Rk)k∈K− with N compatible leaves. By the

induction hypothesis, |K−| ≤ 2N − 1 and so |K| ≤ |K−|+ 2 ≤ 2(N + 1)− 1 which concludes.

A direct, alternative proof that |K| ≤ 2m− 1 is given in next section.

7.3.1 Direct proof that |K| ≤ 2m− 1

We show by induction on m ≥ 1 that, for a family of subsets (Rk)k∈K with a forest structure such

that the Rk are all non-empty and distinct, |K| ≤ 2m− 1. For m = 1 it is trivial, the only subset

possible is {1}. Now let m ≥ 1 and assume that the result is true for m. Let (Rk)k∈K a family of

non-empty and distinct subsets of N∗
m+1 with a forest structure.

Let k1, . . . , kD, D ≤ H , the indices of the regions including m + 1 (possibly non-existent, in

which case D = 0), ordered such that Rk1 ⊊ · · · ⊊ RkD . Let K̃ = K \ {k1, . . . , kD}, and let

K′ = K \ {k1, k2} = K̃ ∪ {k3, . . . , kD}. For k ∈ K̃, we let R′
k = Rk, and for k ∈ {k3, . . . , kD},

we let R′
k = Rk \ {m + 1}. The rest of the proof consists in proving that (R′

k)k∈K′ is a family of

non-empty and distinct subsets of N∗
m with a forest structure. Once this is proven, by induction

hypothesis we will have |K′| ≤ 2m− 1, and finally |K| ≤ |K′|+ 2 ≤ 2m− 1 + 2 = 2(m+ 1)− 1.

First, any R′
k, k ∈ K′

, is non-empty, because if k ∈ K̃, R′
k = Rk ̸= ∅, and if k = kd with d ≥ 3,

Rk1 ⊊ Rk2 ⊊ Rk so |Rk| ≥ 3 and then |R′
k| = |Rk \ {m+ 1}| ≥ 2.

To prove that (R′
k)k∈K′ is a family of distinct subsets of N∗

m with a forest structure, we need to take

k, k′ ∈ K′
, k ̸= k′, and show that R′

k ̸= R′
k′ and R′

k ∩R′
k′ ∈ {∅, R′

k, R
′
k′}.

If |K̃| ≥ 2, let k, k′ ∈ K̃, k ̸= k′. We have R′
k = Rk and R′

k′ = Rk′ , so R′
k ̸= R′

k′ and R′
k ∩ R′

k′ ∈
{∅, Rk, Rk′} = {∅, R′

k, R
′
k′}.

If D ≥ 4, let i, j ∈ {3, . . . , D}, i < j. We have R′
ki

= Rki \ {m + 1} and R′
kj

= Rkj \ {m + 1}
with Rki ⊊ Rkj , so R′

ki
̸= R′

kj
and R′

ki
∩R′

kj
= Rki \ {m+ 1} = R′

ki
.

34

If D ≥ 3 and |K̃| ≥ 1, let i ∈ {3, . . . , D} and k ∈ K̃. We have R′
ki

= Rki \ {m+ 1} and R′
k = Rk.

R′
ki
∩R′

k = (Rki \ {m+ 1}) ∩Rk

= Rki ∩Rk because m+ 1 ̸∈ Rk

∈ {∅, Rki , Rk} by the property of forest structure

Given that R′
ki

⊊ Rki , R
′
ki
∩R′

k = Rki is impossible, so R′
ki
∩R′

k ∈ {∅, Rk} = {∅, R′
k} so the only

thing remaining to prove is that R′
ki

and R′
k are distinct. We prove that by showing that if R′

k = R′
ki

,

there is a contradiction. Indeed, then Rk = Rki \ {m+ 1}, and we can study Rk2 ∩Rk . On the one

hand, Rk2 ∩Rk ∈ {∅, Rk2 , Rk} = {∅, Rk2 , Rki \ {m+ 1}} by forest structure. On the other hand,

Rk2 ∩Rk = (Rk2 \ {m+ 1}) ∩Rk because m+ 1 ̸∈ Rk

= (Rk2 \ {m+ 1}) ∩ (Rki \ {m+ 1})
= Rk2 \ {m+ 1}.

So Rk2∩Rk = Rk2 is impossible. Furthermore, Rk2∩Rk = Rk is also impossible because Rk2 ⊊ Rki

and m+1 ∈ Rk2 hence Rk2 \{m+1} ⊊ Rki \{m+1}. So Rk2∩Rk = ∅, that is Rk2 \{m+1} = ∅,

so Rk2 = {m+ 1} and the contradiction is the following: {m+ 1} ⊆ Rk1 ⊊ Rk2 = {m+ 1}.

Acknowledgements

This work has been supported by the research grants ANR-20-IDEES-0002 (PIA), ANR-19-CHIA-0021

(BISCOTTE), ANR-23-CE40-0018 (BACKUP) and ANR-21-CE23-0035 (ASCAI). Thanks to Romain

Périer for being the first to extensively use the new implemented algorithms. Thanks to Pierre

Neuvial for his valuable feedback. Thanks to the three anonymous reviewers whose suggestions and

comments greatly improved this manuscript.

References

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful

approach to multiple testing. J. Roy. Statist. Soc. Ser. B, 57(1):289–300, 1995. ISSN 0035-9246. URL

https://www.jstor.org/stable/2346101.

Alexandre Blain, Bertrand Thirion, and Pierre Neuvial. Notip: Non-parametric True Discovery

Proportion control for brain imaging. Neuroimage, 260, October 2022. URL https://doi.org/10.1016/

j.neuroimage.2022.119492.

Alexandre Blain, Bertrand Thirion, Olivier Grisel, and Pierre Neuvial. False discovery proportion

control for aggregated knockoffs. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and

S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 78193–

78204. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/

file/f6712d5191d2501dfc7024389f7bfcdd-Paper-Conference.pdf.

Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc confidence bounds on false positives

using reference families. Ann. Statist., 48(3):1281–1303, 2020. ISSN 0090-5364. doi: 10.1214/19-

AOS1847. URL https://doi.org/10.1214/19-AOS1847.

Małgorzata Bogdan, Ewout van den Berg, Chiara Sabatti, Weijie Su, and Emmanuel J. Candès. SLOPE—

adaptive variable selection via convex optimization. Ann. Appl. Stat., 9(3):1103–1140, 2015. ISSN

1932-6157,1941-7330. doi: 10.1214/15-AOAS842. URL https://doi.org/10.1214/15-AOAS842.

35

https://www.jstor.org/stable/2346101
https://doi.org/10.1016/j.neuroimage.2022.119492
https://doi.org/10.1016/j.neuroimage.2022.119492
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6712d5191d2501dfc7024389f7bfcdd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/f6712d5191d2501dfc7024389f7bfcdd-Paper-Conference.pdf
https://doi.org/10.1214/19-AOS1847
https://doi.org/10.1214/15-AOAS842

Winston Chang, Joe Cheng, JJ Allaire, Carson Sievert, Barret Schloerke, Yihui Xie, Jeff Allen, Jonathan

McPherson, Alan Dipert, and Barbara Borges. shiny: Web Application Framework for R, 2025. URL

https://CRAN.R-project.org/package=shiny. R package version 1.11.0.

Guillermo Durand, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Post hoc false positive

control for structured hypotheses. Scand. J. Stat., 47(4):1114–1148, 2020. ISSN 0303-6898. doi:

10.1111/sjos.12453. URL https://doi.org/10.1111/sjos.12453.

A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribution

function and of the classical multinomial estimator. Ann. Math. Statist., 27:642–669, 1956. ISSN

0003-4851. doi: 10.1214/aoms/1177728174. URL https://doi.org/10.1214/aoms/1177728174.

Nicolas Enjalbert Courrech. Post-selection inference for transcriptomic data analysis. Theses, Université

de Toulouse, December 2024. URL https://theses.hal.science/tel-05034928.

Nicolas Enjalbert-Courrech and Pierre Neuvial. Powerful and interpretable control of false discoveries

in two-group differential expression studies. Bioinformatics, 38(23):5214–5221, 10 2022. ISSN 1367-

4803. doi: 10.1093/bioinformatics/btac693. URL https://doi.org/10.1093/bioinformatics/btac693.

Nicolas Enjalbert Courrech and Pierre Neuvial. IIDEA: Interactive Inference for Differential Expression
Analyses, 2025. R package version 0.0.1.0.

Christopher R. Genovese and Larry Wasserman. Exceedance control of the false discovery proportion.

J. Amer. Statist. Assoc., 101(476):1408–1417, 2006. ISSN 0162-1459. doi: 10.1198/016214506000000339.

URL https://doi.org/10.1198/016214506000000339.

Jelle J. Goeman and Aldo Solari. Multiple testing for exploratory research. Statist. Sci., 26(4):584–597,

2011. ISSN 0883-4237. doi: 10.1214/11-STS356. URL https://doi.org/10.1214/11-STS356.

Ruth Marcus, Eric Peritz, and K. R. Gabriel. On closed testing procedures with special reference

to ordered analysis of variance. Biometrika, 63(3):655–660, 1976. ISSN 0006-3444. doi: 10.1093/

biomet/63.3.655. URL https://doi.org/10.1093/biomet/63.3.655.

P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab., 18(3):1269–

1283, 1990. ISSN 0091-1798,2168-894X. URL http://links.jstor.org/sici?sici=0091-1798(199007)18:

3<1269:TTCITD>2.0.CO;2-Q&origin=MSN.

Iqraa Meah, Gilles Blanchard, and Etienne Roquain. False discovery proportion envelopes with

m-consistency. Journal of Machine Learning Research, 25(270):1–52, 2024. URL http://jmlr.org/

papers/v25/23-1025.html.

Rosa J. Meijer, Thijmen J. P. Krebs, and Jelle J. Goeman. A region-based multiple testing method for

hypotheses ordered in space or time. Stat. Appl. Genet. Mol. Biol., 14(1):1–19, 2015. ISSN 2194-6302.

doi: 10.1515/sagmb-2013-0075. URL https://doi.org/10.1515/sagmb-2013-0075.

Nicolai Meinshausen. False discovery control for multiple tests of association under general depen-

dence. Scand. J. Statist., 33(2):227–237, 2006. ISSN 0303-6898. doi: 10.1111/j.1467-9469.2005.00488.x.

URL https://doi.org/10.1111/j.1467-9469.2005.00488.x.

Olaf Mersmann. microbenchmark: Accurate Timing Functions, 2024. URL https://CRAN.R-project.

org/package=microbenchmark. R package version 1.5.0.

Pierre Neuvial, Gilles Blanchard, Guillermo Durand, Nicolas Enjalbert-Courrech, and Etienne Roquain.

sanssouci: Post Hoc Multiple Testing Inference, 2024. URL https://sanssouci-org.github.io/sanssouci.

R package version 0.13.0.

36

https://CRAN.R-project.org/package=shiny
https://doi.org/10.1111/sjos.12453
https://doi.org/10.1214/aoms/1177728174
https://theses.hal.science/tel-05034928
https://doi.org/10.1093/bioinformatics/btac693
https://doi.org/10.1198/016214506000000339
https://doi.org/10.1214/11-STS356
https://doi.org/10.1093/biomet/63.3.655
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199007)18:3<1269:TTCITD>2.0.CO;2-Q&origin=MSN
http://jmlr.org/papers/v25/23-1025.html
http://jmlr.org/papers/v25/23-1025.html
https://doi.org/10.1515/sagmb-2013-0075
https://doi.org/10.1111/j.1467-9469.2005.00488.x
https://CRAN.R-project.org/package=microbenchmark
https://CRAN.R-project.org/package=microbenchmark
https://sanssouci-org.github.io/sanssouci

Marie Perrot-Dockès, Gilles Blanchard, Pierre Neuvial, and Etienne Roquain. Selective inference for

false discovery proportion in a hidden markov model. TEST, pages 1–27, 2023.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria, 2024. URL https://www.R-project.org/.

Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA,

2009. ISBN 1441412697.

Anna Vesely, Livio Finos, and Jelle J. Goeman. Permutation-based true discovery guarantee by sum

tests. J. R. Stat. Soc. Ser. B. Stat. Methodol., 85(3):664–683, 2023. ISSN 1369-7412,1467-9868. doi:

10.1093/jrsssb/qkad019. URL https://doi.org/10.1093/jrsssb/qkad019.

Session information

R version 4.5.1 (2025-06-13)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.3 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.12.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0

locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices datasets utils methods base

other attached packages:
[1] sanssouci_0.16.2 microbenchmark_1.5.0

loaded via a namespace (and not attached):
[1] digest_0.6.37 fastmap_1.2.0 xfun_0.53 Matrix_1.7-3
[5] lattice_0.22-5 matrixStats_1.5.0 knitr_1.50 htmltools_0.5.8.1
[9] generics_0.1.4 rmarkdown_2.29 cli_3.6.5 grid_4.5.1
[13] renv_1.1.5 matrixTests_0.2.3 compiler_4.5.1 tools_4.5.1
[17] evaluate_1.0.4 yaml_2.3.10 rlang_1.1.6 jsonlite_2.0.0

37

https://www.R-project.org/
https://doi.org/10.1093/jrsssb/qkad019

	Introduction
	Notation and reference family methodology
	Multiple testing notation
	Post hoc bounds with reference families
	Regions with a forest structure

	New algorithms
	Pruning the forest
	Fast algorithm to compute a curve of confidence bounds on a path of selection sets
	Illustration on a detailed example

	Implementation
	Numerical experiments
	Conclusion
	Proofs
	Proofs of Section
	Proof of Proposition
	Proof of Proposition

	Proof of Theorem
	Derivation of
	Proof that \mathcal{P}^t\in\mathfrak P
	Proof of and

	Proof of Proposition
	Direct proof that |\mathcal{K}|\leq 2m-1

	Acknowledgements
	References
	Session information

